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Parametric tests make certain conditions 
about the parameters of population. The most 
important assumptions of parametric tests are  
1) the data must be independent, 2) the data 
must be normally distributed, 3) the populations 
must have the same variance, 4) the measure-
ment must be in an interval or ratio scale and 
5) there must be a linear relationship between 
the data. In general, parametric tests are more 
powerful than nonparametric tests because these 
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tests have strongest assumptions about the 
population. Nonparametric tests do not make 
any certain assumption about the population and 
can be used when the distribution of data is not 
known. If sample size is as small as 6, there is no 
alternative to using a nonparametric test unless 
the population distribution is exactly known [1]. 
Nonparametric tests can be used for analyzing 
the four scales of measurement; nominal (e. g., 
presence/absence of plants in plots, percentage 

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ. МОДЕЛИ И ПРОГНОЗЫ

doi: 10.25750/1995-4301-2023-1-016-027

УДК 519.254



17
Теорeтическая и прикладная экология. 2023. № 1 / Theoretical and Applied Ecology. 2023. No. 1

when it is false. The power of a test depends upon 
three parameters; sample size, significance level 
and effect size. The larger the sample size, other 
things (significance level, effect size) being equal, 
the larger the power. Also, the lower the value of 
significance level, the lower the power of the test. 
Sample size and power should be calculated before 
data collection using data of previous studies. 
When the power is calculated after data collection, 
it can be used to verify whether a non-significant 
result is due to lack of strong relationship between 
the groups or due to a low statistical power.  An 
ideal study is the one with a high power indicating 
that the study has a high chance of detecting a dif-
ference between groups if it exists [5]. Common 
values used for calculating power in vegetation 
studies are 0.8 and 0.9 [6–8].

The objective of this study was to present 
sample size and power equations and explain 
with examples how to use these equations for 
nonparametric tests according to the type of 
vegetation research, measurement scale of data 
and the statistical analysis test. The sample size 
and power formulas presented in this study were 
explained for the most frequently used nonpara-
metric tests in vegetation studies including the 
Wilcoxon signed rank, sign test, Mann-Whitney 
U, Kruskal-Wallis, Spearman rank correlation, 
Chi-square and McNemar tests.

Methods

Wilcoxon signed rank test is used for testing 
both paired samples and one sample case. This 
statistic is used to test the differences or changes 
in a vegetation characteristic (e. g., richness, 
density, cover, biomass, production, height, 
rooting depth, leaf size, seed weight, nutrient 
contents, number of flowers), vegetation index 
(e. g., Shannon diversity index, leaf area index), 
spectral vegetation index (e. g., normalized dif-
ference vegetation index, NDVI, modified soil 
adjusted vegetation index, MSAVI), number 
of animals, and area of a vegetation type (e. g., 
woodland) between two time periods or before 
and after a management (e. g., grazing, manur-
ing, vegetation removal) or disturbance (e. g., 
fire, climate change). It can also be used for test-
ing the differences in estimates of a vegetation 
characteristic (e. g., cover, biomass, density) 
between two methods (e. g., plot and line transect 
method), or the differences in a soil property  
(e. g., EC, water content, nutrients) or a climate 
variable (e. g., precipitation, temperature) in a 
habitat between two time periods or before and 
after management, treatment or disturbance [9, 

number of plant species in different life form cat-
egories such as therophytes and cryptophytes), 
ordinal (e.  g., rangeland condition scores, in-
tensity of grazing, cover and biomass classes), 
interval (e. g., temperature, time of grazing) and 
ratio (e.  g., most of vegetation characteristics 
such as biomass, density, richness, cover, height, 
seed size) scales. However these tests are mostly 
used for nominal and ordinal scales. Interval 
and ratio data can be analyzed by nonparametric 
tests if they are ordered and ranked. If data are 
in ranks or can be categorized into ordinal scales 
(e. g., more or less, better or worse), they can be 
analyzed by nonparametric tests whereas they 
cannot be analyzed by parametric tests unless 
precarious and unrealistic assumptions are made 
about the underlying distributions [1].

Two of the most important stages of vegeta-
tion studies are calculation of adequate sample 
size and statistical power. In vegetation studies, 
sample size is the required number of sampling 
units (e.  g., plots, quadrats, points, transects, 
seed and fruit traps), plant individuals, plant 
parts (e. g., seed, stem, leaf) taken for estimat-
ing and comparing vegetation characteristics 
such as cover, biomass, density, production, 
richness, height, diameter, nutrients, rooting 
depth, interactions, etc. 

An accurate sample size is required for 
reliable estimate of vegetation attributes. The 
required sample size depends on the significance 
level, power level and effect size. Significance 
level (α) or Type I error is defined as the prob-
ability of rejecting the null hypothesis, when it 
is true. The most common significance levels 
used in vegetation studies are 10%, 5% and 1% 
[2, 3]. A decrease in the significance level leads 
to an increase in the sample size.

Effect size is the size of difference between 
the groups being compared. The term “effect 
size” was defined as the degree to which the 
phenomenon is present in the population [4]. 
Examples of effect size are the odds ratio in a 
contingency table, the difference in the propor-
tion between positive and negative ranks for Wil-
coxon signed rank test, the difference between 
the proportion of positive or negative ranks and 
zero for sign test and the difference of correlation 
from zero in Spearman rank correlation. The 
larger the effect size, the smaller the sample size.

The power of a statistical test is the probabili-
ty that it will yield statistically significant results. 
Statistical Power is defined as the probability of 
correctly rejecting the null hypothesis when it is 
false, and it is equal to 1–β. Type II error (β) is 
the probability of accepting the null hypothesis 
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10]. Wilcoxon signed rank test is more efficient 
than sign test because it uses more of the infor-
mation in the data, and is affected by the relative 
magnitude of the differences. In the Wilcoxon 
signed rank test, the difference and the absolute 
value of difference is computed for each pair of 
observations. All non-zero absolute differences 
are sorted into ascending order, and ranks are 
assigned. In case of ties (two or more ranks are 
equal), the average rank is computed. 

Sample size calculation for Wilcoxon signed 
rank test. The Sample size for the Wilcoxon 
signed rank test is calculated as follows [11]:

N = (Zα/2 + Zβ)
2 / 3(p' – 0.5)2, 

where p' = (Sp 
– Np) / 0.5N(N – 1)

and p = np/ (np + nn). 

N = np + nn is number of non-zero differences, 
np and nn are respectively number of positive and 
negative differences, Sp is the sum of the ranks 
corresponding to positive differences, p and p' 
can be obtained from a preliminary sample or 
from previous studies, Zα/2 is standard normal 
variate for significance level (Zα/2 

= 1.96 at 
α = 5% and Zα/2 = 2.576 at α = 1% for a two tailed 
hypothesis). For a one-tailed test Zα/2 is replaced 
by Zα (Zα = 1.645 at α = 5% and Zα = 2.326 at 
α = 1%), Zβ is standard normal variate for power 
of study. Zβ = 0.842 for 80% power, and Zβ = 1.282 
for 90% power. The effect size is the rank-biserial 
correlation (the difference between the propor-
tion of positive and negative ranks).

Example. In a study, number of plants in 
a habitat was counted in 8 fixed plots (Table 1) 
between two time periods (dry year and wet year) 
to test if the differences in the number of plants 
between the two time periods are significant.

Sp = 8 + 4 + 5 + 7 + 6 +2 = 32, p = 6/8 =0.75,
p' = 32 – (8 . 0.75)/ 0.5 . 8 .(8–1) = 0.928.

Suppose a researcher wishes to test the 
differences in number of plants in a habitat 
between two time periods assuming that p' may 
be around 0.9 according to the previous study. 
Then, the required sample size at 5% significance 
level and 80% power based on a two-sided test is: 
N = (1.96+0.842)2/3(0.9–0.5)2 = 16.35.

The required sample size is 17 after rounding up.
Power calculation for Wilcoxon signed rank 

test. The power for the Wilcoxon signed rank test 
is calculated as follows: . 
The power for the value of Zβ is obtained from the 
table of standard normal probabilities.  Zα is used 
instead of Zα/2  for a one-tailed test.

Example. A researcher plans to test the 
differences in number of plants in a habitat 
between two time periods using 10 fixed plots 
assuming that p' is near 0.9. The power for the 
Wilcoxon signed rank test at 5% significance 
level for a two-tailed test is calculated as follows:

. The power for 
the value of Zβ = 0.23 is 0.591 from z-table.

Sign test is applied for testing both paired 
samples and one sample case. The applications 
of sign test are similar to the applications of Wil-
coxon signed rank test in vegetation studies as 
explained before [12]. In sign test, the difference 
for each pair is calculated, and the number of 
positive differences (np) and negative differences 
(nn) is counted. The cases in which the difference 
equals zero are ignored. 

Sample size calculation for sign test. The sam-
ple size for the sign test is calculated as follows [11]:
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nn) and np is the number of positive 

differences and nn is the number of negative dif-
ferences, p can be calculated from a preliminary 
sample or taken from previous studies. The effect 
size for sign test is defined as p – 0.5.

Example. Suppose the objective is to test 
whether the differences in biomass of plants in a 
habitat between two time periods are significant 
using sign test. The biomass of plants is assumed 
to increase in 75% and decrease in 25% of the 
fixed plots between the two time periods. Then 
the sample size for testing the differences in 
biomass at 5% significance level and 80% power 
is: N = (1.96+0.842)2 / 4(0.75–0.5)2 = 31.4. 
Then 32 fixed plots are required based on two-
tailed test.

Power calculation for sign test. The 
power for sign test is calculated as follows: 

2/

2)5.0(4 �� ZNpZ ���� . The power for the value of 
Zβ 

is obtained from the table of standard normal prob-
abilities. Zα is used instead of Zα/2 for a one-tailed test.

Table 1
Number of plants in eight fixed plots in dry and wet year

Number of plants in dry year 12 10 14 11 9 10 8 13
Number of plants in wet year 28 16 12 6 18 25 21 16
Difference +16 +6 -2 -5 +9 +15 +13 +3
Rank 8 4 1 3 5 7 6 2
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Example. Suppose a researcher wishes to 
use 36 fixed plots for testing the differences in 
biomass of plants in a habitat between two time 
periods expecting that the biomass will increase 
in 75% of the plots and decrease in 25% of the 
plots. Then, what is the power of the sign test at 
5% significance level for a two-sided hypothesis?  

04.196.136)5.075.0)(4( 2 ������Z . The power for 
the value of Zβ 

= 1.04 is 0.85 from z-table.
Mann-Whitney U test is used to test 

whether the difference between two independent 
samples is significant. This statistical method 
is used to test the differences in a vegetation 
characteristic (e. g., richness, cover, bio-
mass, density, height, basal area, production, 
nutrients, seed weight), spectral vegetation 
index (e. g., NDVI) or vegetation index (e. g., 
Simpson diversity index, Pielou’s index of non-
randomness) between two sites (e. g., two habi-
tats, two vegetation types, grazed and ungrazed 
sites, manured and unmanured sites). This test 
can also be used for testing the differences in a 
soil or climate variable between two habitats, 
or the differences in a vegetation characteristic 
between two plant species or two life form cate-
gories [13]. To calculate Mann-Whitney U test, 
the observations for both groups are combined, 
sorted in order of increasing size and ranked. 
If ties exist (two or more ranks are equal), the 
average rank is calculated. 

Sample size calculation for Mann-Whitney 
U test. The sample size for Mann-Whitney U test 
can be calculated as follows [11]: N = (Zα/2 + Zβ )

2 / 
12c(1–c)(p'' – 0.5)2 where c = n

1 
/ N or c = n

2 
/ N 

and p''= U/ n
1 
n

2
 and U= n

1 
n

2
 +[n

1
(n

1
+ 1)/2] – S

1
, 

S
1
 is the sum of ranks for group 1, n

1
 and n

2
 are 

the sample size of group 1 and 2 respectively,  
N = n

1
+ n

2
, p’’  can be obtained from a preliminary 

sample or from previous studies. The effect size 
is the rank- biserial correlation (1 – 2U / n

1
n

2
).

Example. A study was conducted to test 
whether there is a significant difference in the 
normalized difference vegetation index (NDVI) 
between two vegetation types. The mean NDVI 
in 12 plots (5 plots in vegetation type 1 and 7 
plots in vegetation type 2) is presented in the 
following table (Table 2).

Suppose a researcher wishes to test whether 
there are significant differences in the NDVI 
between two vegetation types. The researcher 
can estimate that p’’  will be about 0.06 (or 0.94) 
according to the previous study, and plans to use 
40% of the plots in one vegetation type and 60% 
of the plots in the other vegetation type. Then, 
the required sample size at 5% significance level 
and 90% power is: N = (1.96+1.282)2 / (12 . 0.40) 
(1–0.40) (0.06–0.5)2 = 18.85. Then, 19 plots need to 
be used for both groups (11 plots in one vegetation 
type and 8 plots in the other) for a two sided test. 

Power calculation for Mann-Whitney 
U test. The power for Mann-Whitney U test 
to detect the difference between two inde-
pendent samples is calculated as follows: 

2/

2)5.0)(1(12 �� ZNpccZ ������� .  The power is 
calculated using the value of Zβ from the table of 
standard normal probabilities. Zα/2 is replaced by 
Zα for a one-tailed test.

Example. According to the previous example, 
if the researcher wishes to use 5 plots in one veg-
etation type and 7 plots in the other, and expecting 
that p’’  = 0.06 (or 0.94), the power for testing the 
differences in NDVI values between the two veg-
etation types at 5% significance level is calculated 
as follows: N = 5+7 = 12, c = 5/12 = 0.417.

64.096.1

12)5.006.0)(417.01(417.012 2

��

�������Z

The power for the value of Zβ = 0.64 from z-table 
for a two-sided test is 0.739.

Spearman rank correlation. In vegetation 
studies,  Spearman rank correlation is used to 
detect the relation between a vegetation char-
acteristic (e. g., biomass, production, density, 
richness, height, abundance, basal area, leaf size, 
seed weight, leaf area index) and an environmen-
tal variable (e. g., precipitation, temperature, 
humidity, elevation, slope, soil pH, EC, water 
content, nutrients). It can also be used for cal-
culating the association in a plant characteristic  
(e. g., biomass) between two plant species [14, 15].

Sample size calculation for Spearman 
rank correlation. The sample size for Spear-
man rank correlation (rS) is calculated as fol-
lows [16]: 

Table 2
Mean NDVI in 5 plots in vegetation type 1 and 7 plots in vegetation type 2

Vegetation type 1 Vegetation type 2
Mean NDVI 0.58 0.60 0.65 0.67 0.50 0.35 0.48 0.59 0.32 0.38 0.40 0.42
Rank 8 10 11 12 7 2 6 9 1 3 4 5

S
1
 = 8 + 10 + 11 + 12 + 7 = 48,    U = (5 . 7) + [5(5+1)/2] – 48 = 2

c = 5/12 = 0.417,                            p''= 2/(5 . 7) = 0.057
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where rS is the Spearman rank correlation. 
When the difference is tested between the 
Spearman rS and zero, rS is the effect size.

Example. Suppose the Spearman rank cor-
relation (rS) between rangeland condition scores 
and precipitation is expected to be near 0.60. Then 
the sample size for calculating Spearman correla-
tion coefficient (rS ) at 5% significance level and 
80% power based on a two-tiled hypothesis is: 
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The required sample size is 21 after rounding up 
for a two-tailed hypothesis.

Power calculation for Spearman rank corre-
lation. The power for Spearman rank correlation 
(rS ) is calculates as follows: 
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where N is the sample size. The power is 
calculated using the value of Zβ from the table 
of standard normal probabilities. 

Example. Suppose a researcher wishes to 
determine the Spearman rank correlation (rS ) 
between rangeland condition scores and pre-
cipitation using 25 sampling plots, and thinks 
that the correlation will be about 0.60. Then 
the power for Spearman rank correlation coef-
ficient (rS ) at 5% significance level based on 
a two-tiled hypothesis is obtained as follows:
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The power for the value of Zβ = 1.2 is 0.88 from 
z-table.

Chi-square test using contingency table 
data. A Chi-square statistic is used to test the 
association or independence between two or more 
traits, when the data are in discrete categories 
(either nominal or ordinal). Chi-square test 
based on a contingency table is mainly used to 
test whether the occurrences of two plant species 
are associated, or two or more habitats contain 
equal number of plant species. Chi-square test 
can also be used for one sample case to test the 
differences in a plant characteristic (e. g., rich-
ness, density) among different life forms (e. g., 
geophytes, therophytes) or the differences in 
frequencies of two or more plant species (% 
number of sampling units that contain a plant 
species). This test can also detect if a certain type 
of habitat is more frequently selected by an ani-
mal, or if plant species differ in their proportion 
of coexistence with an organism (e. g., bacteria, 
fungus species) [17, 18].

Sample size calculation for chi-square test 
based on contingency table. The sample size for 
chi-square test based on contingency tables can 
be calculated using the following formula and 
Cohen’s tables [4]. N = N

0.1
/100w2, where N

0.1
 is 

the necessary sample size for a given significance 
level, power and degrees of freedom (u) at w = 
0.1 (read from the Cohen’s table). The degrees of 
freedom for a contingency table with r rows and c 
columns is u = (r–1)(c–1). w is the nontabulated 
effect size and is calculated as Nw /2�� , where 
χ2 is the chi-square value calculated using the 
data of contingency table and N is the total 
number of samples. A part of the Cohen’s sample 
size table for chi-square test at α = 0.05 and 
u = 6 is presented below (Table 3).

Example. A researcher wants to compare 
the frequencies of four plant species in three 
vegetation types by calculating the number of 
quadrats containing the plant species. Let us 
assume that in a previous similar study, the chi-
square calculated from data of a 3 . 4 table was 
14 based on a sample of size (N) = 120. Then, the 
effect size, 34.0)120/14( ��w . If the researcher 
wants to calculate the sample size assuming w = 
0.34 for a new study, the required sample size at 
α = 0.05 and 90% power is calculated as follows: 

Table 3
N to detect w by χ2 at α = 0.05 and u = 6

w
Power 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.90 1742 435 194 109 70 48 36 27 22

0.95 2086 521 232 130 83 58 43 33 26

0.99 2805 701 312 175 112 78 57 44 35
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u = (3–1).(4–1) = 6. According to the Cohen’s 
table (table 3), N

0.1 
= 1742 at α = 0.05, power = 

0.90, u = 6 and w = 0.1, then the sample size will 
be N = 1742/100(0.34)2 = 151.

Sample size calculation for chi-square test 
based on 2 . 2 table. The sample size for a 2 . 2  
contingency table (df = 1) can be obtained using 
the formula in the previous section and also us-
ing the following equation: ( ) 2

2
2

/ wZN
c �� ��  .

χc
2 is the critical value of the chi-square ob-

tained from chi-square distribution table based 
on a specified significance level and df = 1. For 
5% significance level and df = 1, χc

2  = 3.84 and for 
1% significance level and df = 1, χc

2  = 6.63, Zβ is 
standard normal variate for power and is 0.842 
for 80% power (20% Type II error) and 1.282 for 
90% power (10% Type II error). w is the effect 
size and is calculated as Nw /2�� , where χ2 is 
the chi-square value calculated using the data of  
2 . 2 table and N is the total number of samples. 
χ2 = ∑ (oi 

–ei)
2/ei, where oi and ei

 are the observed 
and expected value for cell i respectively.

Example. In a study, the association be-
tween two plant species (A and B) was tested 
using chi-square. The data were obtained using 
located quadrats and summarized in a 2 . 2 table 
as follows (Table 4):

15 quadrats (cell a) contain both species A 
and B. In 6 quadrats (cell b) species A is present 
but not B. In 7 quadrats (cell c) species B is 
present but not A. In 22 quadrats (cell d) neither 
species A nor B are found. The expected value 
for each cell of the table is calculated as follows: 
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and the effect size 469.050/11 ��w .
Suppose a researcher wishes to test the 

association between two plant species (A and 
B) using data of a 2 . 2 table and chi-square 
test assuming w  = 0.47 according to the pre-
vious study. Then, the required sample size 

at 0.05 significance level and 80% power is: 
5.3547.0/)842.084.3( 22 ���N . Therefore 36 

quadrats are required for detecting the associa-
tion between the two plant species.

Power calculation for chi-square test based 
on contingency table. The power for a chi-square 
test based on the data of a contingency table can 
be calculated using the following equation [19]:
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The power is calculated based on Zβ value 
from Z-table. ν is degrees of freedom and is 
calculated for a contingency table with r rows 
and c columns as ν = (r – 1)(c – 1) and χc

2 is 
the critical value of the chi-square obtained 
from chi-square distribution table based on 
a specified significance level and degrees of 
freedom (ν) and λ is the noncentrality parameter 
(calculated χ2).

Example. According to the previous example 
(frequencies of four plant species in three 
vegetation types), if the χ2 is expected to be 14 
based on data of a 3 . 4 table using 120 plots, the 
power at α = 0.05 is calculated as follows: λ =14, 
ν = (3–1)(4–1) = 6, table χc

2 for α = 0.05 and 
df = 6 is 12.6,

901.0
)146(9

))14(26(2

/)146(9

))14(26(2
1

146

6.12

2

2

3

1

��
�

�

�
�

�

�

�
�

�

�

��
�

�
��
�

�

�

�
���

�

�
�
�

�

�
���Z

                                     .

The power obtained for Zβ = +0.901 from 
Z-table is 0.81.

Power calculation for chi-square using 2 . 2 
table data. The power for a 2 . 2 contingency 
table can be calculated using the formula in the 
previous section. For a 2 . 2 table, the degrees 
of freedom is 1 and the critical chi-square value 
at α = 0.05 is 3.84 and at α = 0.01 is 6.63. The 
statistical power for a 2 . 2 contingency table can 
also be calculated using the following equation: 

2)( cwNZ �� ��� .

Table 4
Presence/absence data of species A and B

Species Species B Total
Present Absent

Species A Present 15 6 21
Absent 7 22 29
Total 22 28 N = 50
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Example. Suppose a researcher wants to 
use 50 plots for detecting the association using 
presence/absence data of two plant species 
in a 2 . 2 contingency table. The researcher 
expects that the chi-square will be about 11, 
that is the effect size 469.050/11 ��w . The 
power at 0.05 significance level is obtained as 
follows: 36.184.3)469.050( �����Z . The power 
obtained for Zβ = 1.36 from Z-table is 0.91.

McNemar test is used to test the difference 
between paired proportions, particularly when the 
measurement is in either nominal or ordinal scale. 
McNemar test is mainly used for detecting the ac-
curacy of classification in vegetation mapping based 
on comparing the performance of two classifiers. It 
has also been applied for detecting the changes in 
proportions of presence/absence data of plant spe-
cies between two sites or two time periods [20, 21].

Sample size calculation for McNemar test. 
The sample size for McNemar test using the 
proportions of the cells of 2 . 2 table (Table 5) is 
calculated as follows [22]: 

[ ]
2

2
2

2/

�

��� �� ��
�

ZZ
N .

Where δ = p10– p01 and ψ = p10+ p01. The Odds 
ratio p10 / p01 is used to specify the effect size.

Example. A study was conducted to compare 
the performance of two classifiers for vegetation 
mapping. The data are presented in the following 
2 . 2 table (Table 6). The number of pixels cor-
rectly classified by classifier 1, but incorrectly 
classified by classifier 2 is 175, and the number 
of pixels correctly classified by classifier 2, but 
incorrectly classified by classifier 1 is 125. 

The proportion for each cell was obtained as 
follows (Table 7).

δ = 0.35 – 0.25 = 0.1,    ψ = 0.35 + 0.25 = 0.6

Suppose a researcher wishes to compare the 
performance of two classifiers for vegetation 
mapping using data of a 2 . 2 table. The research-
er assumes that p

10
 = 0.35 and p

01
 = 0.25 accord-

ing to the previous study. Then, the required 
sample size for the chi-square test of McNemar 
at 5% significance level and 80% power for a 
two- sided test is calculated as follows:

[ ] 4691.0/1.06.0842.06.096.1 2
2

2 ����N .

Table 5
Proportions in the cells of a 2 . 2 table for McNemar test

Yes = 1 No = 0
Yes = 1

N

a
p �11

N

b
p �10

p
1
 = p

11
 + p

10

No = 0

N

c
p �01

N

d
p �00

1 – p
1

p
2
 = p

11
 + p

01
1 – p

2
1

Table 6
Number of pixels classified by the classifiers 1 and 2

Classifier 2 Total
Classifier 1 correct incorrect

correct 110 175 285
incorrect 125 90 215

Total 235 265 500

Table 7
Calculated proportions for each cell of Table 5

Classifier 2 Total
Classifier 1 correct incorrect

correct
22.0

500

110
11 ��p 35.0

500

175
10 ��p 0.57

incorrect
25.0

500

125
01 ��p 18.0

500

90
00 ��p 0.43

Total 0.47 0.53 1
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Power calculation for McNemar test. The 
power for chi-square test of McNemar is calcu-
lated as follows:

2

2/

2

��

��
�

�

�

�
�

ZN
Z .

The power is calculated using the value of Zβ 
from the table of standard normal probabilities.

Example. Returning to the previous example, 
if the researcher wishes to use 500 pixels for com-
paring the performance of two classifiers, assuming 
p

10
 = 0.35 and p

01
 = 0.25 the power for chi-square 

test of McNemar at 5% significance level based on 
a two-tailed test is calculated as follows: 

[ ]
934.01.06.0

/6.096.11.0500

2

2

��

����Z

                                 
. 

The power for the value of Zβ  = 0.934 is 0.823 
from z-table.

Kruskal-Wallis test is used for comparing 
two or more independent samples. This statistic 
is used to test if there are differences in a veg-
etation characteristic (cover, biomass, density, 
richness, height, nutrient, rooting depth, number 
of seeds), vegetation index (e. g., Hill’s diversity 
index, Pielou’s  index  of  non-randomness, leaf 
area index) or spectral vegetation index (NDVI, 
DVI) between two or more sites or between two or 
more species. It is also used to test the differences 
in a soil property (e. g., Ec, pH, organic matter, 
nutrients) or a climate variable (e. g., precipita-
tion) between two or more sites [23, 24].

Sample size calculation for Kruskal-Wallis 
test (k groups with equal sizes). The sample 

size for Kruskal-Wallis test is (π/3) = 1.047 
times the sample size for ANOVA F-test [25]. 
The required sample size for ANOVA F-test can 
be obtained using Cohen’s tables [4] based on 
the given significance level (α), power (1 – β), 
effect size (f), number of groups (k) and the 
numerator degrees of freedom (u = k –1). The 
effect size is defined as f = δ

m
/δ, where δ

m
 is 

the standard deviation of means calculated as 

� �
��

k

i im
kmm

1

2 /)(�
. In this equation, m

i
 is the 

mean of group i and m is the mean of the means of 
the groups with equal sizes and k is the number 
of groups. δ is the within-population standard
deviation and is calculated as �� ki /

2�� , 
where δi is the standard deviation for each 
group. The sample size is then obtained using 

1
400

2

05.0 ��
f

N
N , where N

0.05
 is the necessary sample

size for the given α, u, and power at f = 0.05 (read 
from Cohen’s table) and f is the nontabulated ef-
fect size. A part of the Cohen’s table for obtaining 
sample size for ANOVA F-test at α = 0.05 and u = 2 
is presented below (Table 8).

Example. In a study, the height of trees was 
compared between three habitats using the mean 
height of the trees in four plots in each habitat 
(data are presented in the Table 9).

K = 3, u = 3 – 1 = 2, 62.6
3

35.75.66
�

��
�m

557.0
3

)62.635.7()62.65.6()62.66(
222

�
�����

�m�

698.0
3

502.0515.0445.0
�

��
��

Table 8
N to detect f by F test at α = 0.05 and u = 2

f
power 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80
0.80 1286 322 144 81 52 36 27 21 14 10 8 6
0.90 1682 421 188 106 68 48 35 27 18 13 10 8
0.95 2060 515 230 130 83 58 43 33 22 15 12 9
0.99 2855 714 318 179 115 80 59 46 29 21 16 12

Table 9
Height of trees within 4 plots in 3 habitats

Plot Habitat
1 2 3

1 6.8 6.2 8.5
2 5.2 6.9 6.6
3 6.5 5.5 7.3
4 5.5 7.4 7
m

i
6 6.5 7.35

δi
2 0.445 0.515 0.502
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798.0
698.0

557.0
��f

Suppose a researcher wishes to compare the 
height of trees between three habitats using the 
mean height of the trees in plots in each habi-
tat. The researcher assumes that the effect size 
(f) will be around 0.78 according to a previous 
study. Then the sample size at 5% significance 
level and 80% power is calculated as follows:

28.61
)78.0(400

1286
2

���N .

N
0.05

 = 1286 is taken from Table 8. The re-
quired sample size for Kruskal-Wallis test is 
1.047 . 6.28 = 6.57. Therefore, after rounding up, 
7 samples are needed for each of the three groups 
and the total sample size is 7 . 3 = 21.

Sample size calculation for Kruskal-Wallis 
test (k groups with unequal sizes). When the 
compared groups are of unequal sizes, m, δ

m
 

and δ is calculated as follows: m = ∑n
i
m

i
/(n

1
 + 

n
2
 + ... + n

k
), where n

i
 is the size of group i and

 
� ����� ).../()( 21

2

kiim nnnmmn�
 and 

).../( 2

2� ���� kiii nnnn ��
. In a study, the 

height of trees was compared between three sites 
based on unequal replications (unequal number 
of plots). The data are presented in the table 
below (Table 10). K = 3, u = 3 – 1 = 2 .

92.6
366

)2.6(3)6.6(6)6.7(6
�

��

��
�m

574.0
15

)92.62.6(3)92.66.6(6)92.66.7(6
222

�
�����

�m�

66.0
15

)42.0(3)39.0(6)5.0(6
�

��
��

87.0
66.0

574.0
��f

Suppose a researcher wishes to compare the 
height of trees between three habitats based on 

unequal number of plots. The researcher wants 
to detect an effect size (f) of 0.85 according to 
a previous study and plans that n

1
 = n

2
, and 

n
3
 = 0.5n

1
. Then the sample size at 5% signifi-

cance level and 80% power is calculated as follows:
 45.51

)85.0(400

1286
2

���N
. The required sample size 

for Kruskal-Wallis test is 1.047 . 5.45 = 5.7 
which is 6 after rounding up. This is the average 
n per sample. The total sample size is 6 . 3 = 18. 
The sample size for each group is obtained as 
follows: n

1
 + n

2
 + n

3
 =18, n

1
 + n

1
 + 0.5n

1
 = 2.5n

1 
= 

18, then n
1
 = 7, n

2
 = 7 and n

3
 = 4.

Power calculation for Kruskal-Wallis test  
(k groups with equal sizes). The power for Kruskal-
Wallis test is (3/π)= 95.5% of the power of ANOVA 
F-test [25]. The statistical power for ANOVA F-test 
can be calculated using the following equation [4, 26]:
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The power is calculated based on Zβ value 
from Z-table. u is numerator degrees of freedom 
(u = k – 1) and k is the number of groups, λ is 
the noncentrality parameter and is calculated 
as λ = f2n(u + 1) = f2N and f is the effect size as 
explained before, n is the average sample size per 
group (n = N/k) and N is the total sample size, 
ν is the denominator (error) degrees of freedom 
(ν = N – k), F

c
 is the critical F-value obtained from 

F-distribution table using the given significance 
level (α), numerator degrees of freedom (u) and 
denominator (error) degrees of freedom (ν).

Example. Following the example in the 
previous section (height of trees with equal 
sizes), if the researcher wishes to use 4 plots in 
each habitat for comparing the heights of plants 
between three habitats, what is the power of 
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Table 10
Height of trees in three sites with unequal replications

No. of plot Site
1 2 3

1 8.5 7.1 6.8
2 7.3 6.5 5.3
3 8.6 6.2 6.5
4 6.7 6.9 –
5 7.4 5.5 –
6 7.1 7.4 –

m
i

7.6 6.6 6.2

 δi
2 0.5 0.39 0.42

n
i

6 6 3
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Kruskal-Wallis test at 5% significance level, 
with assuming : f = 0.78 : n = 12/3 = 4, u = 3 –1 = 
2, λ = 0.782 . 4 . (2 +1) = 7.3. The critical F-value 
at α = 0.05, numerator df = 2, and error df = 9 is 
4.26 from F-table.

05.0
3.72

)3.7(22

9

)26.4(2
/9

)26.4(2
)1)9(2(

)3.7(2
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)3.72(2

�
�

�
��

�

�

�
�

�

�

�

�
����Z

�

The power obtained for Zβ =0.05 from 
Z-table is 0.52 for ANOVA F-test. The power 
for Kruskal-Wallis test is 95.5% . 0.54 = 0.50.

Power calculation for Kruskal-Wallis test 
(k groups with unequal sizes)

Example. Following the example in the 
previous section (height of trees with unequal 
sample sizes), the researcher assumes f = 0.85 
and wishes to use 6 plots in habitat 1, 6 plots in 
habitat 2 and 3 plots in habitat 3 for comparing 
the height of trees between the three habitats. 
Then power at 5% significance level is calculated 
as follows: f = 0.85, N = 6 + 6 + 3 = 15, n = 15/3 = 5, 
u = 3 – 1 = 2, ν = 15 – 3 =12, λ = 0.852 . 5 . (2+1) = 
10.84. The critical F-value at α = 0.05, numerator 
df = 2, and error df = 12 is 3.89 from F-table.

The power obtained for Zβ = 0.646 from 
Z-table is 0.74 for ANOVA F-test. The power 
for Kruskal-Wallis test is 95.5% . 0.74 = 71%.

Results and Discussion

The formulas explained in this study can 
be used to calculate sample size and power for 
nonparametric tests, that do not make any as-
sumption about the distribution of data. A number 
of vegetation characteristics are nominal (e. g., 
presence/absence data of vegetation) and ordinal 
(e. g., rangeland condition scores) and therefore 
appropriate sample size equations are required 
to efficiently analyze these types of data through 
nonparametric tests. In addition, although most 
of vegetation characteristics such as biomass, 
density, plant height, richness and seed produc-
tion are in ratio scale and reported to be normally 
distributed [27, 28], some research have revealed 
that the distribution of these data is not normal 
[29]. Therefore the distribution of ratio data of 
vegetation should be detected using Kolmogorov- 

Smirnov or Shapiro-Wilk tests before selecting 
a statistical analysis test. If the data are not 
normally distributed, they can be normalized by 
resampling with a larger sample size (N) or by 
using transformation methods such as log, square 
root, and Arcsine, and then a parametric test can 
be used. However, if the data were not normalized, 
a nonparametric test and as a result an appropri-
ate sample size equation for the test is required. In 
a number of sample size software, the power and 
sample size for a nonparametric test is calculated 
by multiplying a correction factor to the power 
and sample size of its equivalent parametric test. 
For example, the power for the paired-samples 
Wilcoxon signed rank test is considered to be 
95.5% of the power of paired samples t-test, for 
the Mann-Whitney U test, it is 95.5% of the power 
of two independent samples t-test [30], the power 
for the Kruskal-Wallis test is 95.5% of the power 
of ANOVA F-test [25] and for the Spearman rank 
correlation it is 91% of the power of Pearson cor-
relation test [31]. However, calculation of sample 
size and power for a nonparametric test by using 
an appropriate sample size and power equation 
which is relevant and specific to the nonparamet-
ric test appears to be more effective and accurate. 
A power of 80% is recommended by researchers 
as an efficient power for vegetation studies, but 
in most vegetation research the reported power 
is about 40% which seems to be very low [32]. 
A low power in a study may lead to obtaining a 
non-significant result despite that there may be an 
ecologically powerful and significant effect or dif-
ference. Therefore an adequate sample size should 
be selected for achieving an efficient power in 
design stage and before data collection. One way 
to improve the power of a test with an inadequate 
sample size is to use one-tailed hypothesis if pos-
sible. A one-tailed test requires a lower sample 
size than a two-tailed test to achieve the same level 
of power as a two-tailed test, but it can be used 
when the effect in one direction can be explained 
[32]. For example, a one-tailed test can be used 
to determine whether plant biomass or cover is 
greater in ungrazed sites than in grazed sites or 
plant production is higher in the habitats with 
higher precipitation than the habitats with lower 
precipitation. Another solution for increasing the 
power of a test is to select a higher significance 
level (e. g., 5% instead of 1%).

Conclusions

In this study, appropriate sample size and 
power equations were explained according to the 
measurement scale of vegetation data (nominal, 
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ordinal, interval and ratio), type of vegetation 
research and the nonparametric test used for 
analyzing vegetation data. If an adequate sample 
size is not taken for a vegetation study, a non-
significant result may be obtained due to a low 
power even if there is an ecologically strong effect 
or difference. Power and sample size calculation 
is more valuable in the design or planning stages 
of research than after data collection. However 
if power is calculated after data collection and 
testing the hypothesis, presenting significance 
level and sample size along with the estimated 
power can provide important information about 
the null hypothesis that was not rejected.
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