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Industrial and transport emissions are the main sources of air pollution in large cities, causing significant risks to human 
health. Minimizing risks requires information on the distribution and physico-chemical characteristics of emissions. Spatial and 
temporal detailed data are required because the intensity and composition of emissions varies greatly with time of day and local 
variations in wind, traffic composition and flow. There are modern mathematical models that simulate the behavior of emissions 
from industrial plants and traffic flows with a high degree of resolution. The chemistry of the simulated emissions has also been 
largely resolved by taking into account photochemical reactions as well as dry and wet deposition processes. This review presents 
concepts of urban air pollution monitoring, and analyses and summarizes new insights of real-time air pollutants concentrations. 
This research is expected to open a door for creating smart cities and digital twins for effective management of environmental 
risks in an urbanized area. The reviewed studies were classified by various modeling approaches such as statistical and analytical 
models which give the best prediction results. We find that air pollution monitoring and assessment techniques for calculating air 
concentrations were successfully used to study temporal and spatial changes in pollutant concentrations. In the same time, it is 
impossible to create a universal analytical model for predicting the concentrations of pollutants anywhere and for any condition. 
The outcome of this study will help engineers and researchers develop air pollution forecasts concept.
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Промышленность и автотранспорт являются основными источниками загрязнения воздуха в крупных городах, 
вызывая значительные риски для здоровья человека. Минимизация рисков требует информации о распределении  
и физико-химических характеристиках выбросов. Требуются подробные пространственные и временные данные, по-
скольку интенсивность и состав выбросов сильно варьируются в зависимости от времени суток и местных изменений 
состава движения и потока ветра. Существуют современные математические модели, моделирующие поведение выбросов 
промышленных предприятий и транспорта с высокой степенью разрешения. Химический состав смоделированных вы-
бросов также в значительной степени решён за счёт учёта фотохимических реакций, а также процессов сухого и влажного 
осаждения. В обзоре представлены концепции мониторинга загрязнения воздуха в городах, а также проанализированы  
и обобщены новые данные о концентрациях загрязнителей воздуха, полученные в режиме реального времени. Ожидается, 
что это исследование откроет дверь для создания умных городов и цифровых двойников для эффективного управления 
экологическими рисками в урбанизированной зоне. Проанализированные научные работы были классифицированы на 
основании различных подходов к моделированию, таких как статистические и аналитические модели, дающие наилуч-
шие результаты прогнозирования. Отмечено, что расчётные методы оценки и мониторинга концентрации загрязняющих 
веществ в атмосферном воздухе могут успешно использоваться для выявления пространственных и временных закономер-
ностей динамики загрязнения городской атмосферы. В то же время невозможно создать универсальную аналитическую 
модель для прогнозирования концентраций загрязняющих веществ в любом месте и для любых условий. Результаты 
этого исследования помогут инженерам и исследователям разработать концепцию прогнозов загрязнения воздуха.

Ключевые слова: математические модели, загрязнение воздуха, типы загрязняющих веществ, методы эколо-
гического мониторинга, качество воздуха.
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The state of the surface layer of atmospheric 
air is of great importance for the flora and fauna, 
as well as for human health [1]. The deteriorat-
ing air quality in large cities is of particular 
concern. Changes in the chemical and aerosol 
composition of urban air occur due to anthro-
pogenic impact: emissions from industrial en-
terprises and exhaust gases from vehicles. Air 
quality monitoring in an urban environment 
can be estimated from air monitoring stations. 
However, these point measurements may be in-
sufficient due to their low spatial representative-
ness. To monitor and predict the ecological state 
of the city atmosphere, along with instrumental 
studies, methods of mathematical modeling can 
be successfully applied.

This review was prompted by the need to 
better understand the main sources of air pol-
lution in large cities, especially at the scale of 
individual streets. This is true for typical Rus-
sian large cities, which are characterized by the 
location of large industrial enterprises in close 
proximity to residential buildings, as well as 
increased traffic density, for which the exist-
ing highways were not designed. Though in 
many large cities there is a state air monitoring 
network, but it is not sufficiently well distrib-
uted. Another serious problem is the inability 
to determine the source of pollution leading to 
exceeding the maximum permissible concentra-
tion (MPC). For example, Chelyabinsk showed 
heavy air pollution, having about 30% of pollu-
tion days in the whole year when there are the 
excesses of the established MPCs of air pollut-
ants [2]. The sources of pollution are not always 
clear, but it is very important to know them for 
making decisions to reduce the amount of days. 
One solution could be to expand the monitoring 
network by using low cost wireless sensors for 
real-time air quality monitoring system [3, 4]. 
But currently there are only very few pollutants 
that can be measured well without expensive 
equipment [5]. In most cases, complex and 
expensive physicochemical methods of analysis 
are required. Therefore, modern scientific mod-
eling of emissions from industrial plants and 
vehicles makes it possible to assess air pollution 
in real time [5]. Air pollution models make it 
possible to predict the situation through the 
implementation of a scenario approach saving 
the considerable expense of monitoring equip-
ment [6].

The aim of the present review was to focus on 
the state of the science of modelling air pollutant 
concentration from a large number of sources in 
the urban environments.

Statistical air pollution models

The mathematical models can be generally 
classified into statistical and analytical. Statisti-
cal models are a simplified mathematical repre-
sentation of the process leading to the generation 
of the observed values of the variable of interest. 
A statistical model can be used for simulation 
that simulates the operation of a simulated 
process. This allows you to artificially generate 
new values of the studied variable, which have 
the properties of real data.

In the literature, among numerous statisti-
cal approaches, there are two that are most useful 
and often used to assess air pollution:

– simplified dispersion models, in which 
the dynamic transfer equations are reduced to a 
series of formulas;

– models based on GIS technologies. 
Simplified dispersion models. Simplified 

dispersion models (SDMs)represent an attempt 
to reduce the complex dynamic equations inher-
ent in a true variance model to a simpler and 
generally static form. Simplification is achieved 
mainly by ignoring local, time-varying processes 
that affect short-term concentrations of air pol-
lutants (for example, associated with changes 
in meteorology), and instead models average 
long-term patterns. 

Among numerous examples of statistical 
models, two are the most widely used in Europe: 
the Calculation of Air pollution from Road (CAR) 
traffic model [7] and the Design Manual for Roads 
and Bridges (DMRB) model. However, they are 
inevitably limited so that they are not designed to 
deal with non-transport emissions, and in terms of 
the number of sources and the ability to simulate 
long-range transport of pollutants.

GIS-based models. Geographic informa-
tion systems (GIS) are important tools for air 
pollution modeling. They are characterized by 
the ability to extract and process spatial data 
required as input to air pollution models and 
then display the results of the models.

However, in recent years, GIS technology 
has also been used to independently develop air 
pollution models. One of such approaches is land 
use regression (LUR) [8]. It is based on empiri-
cally derived regression equations linking land 
cover to measured air pollutant concentrations 
at a number of monitoring sites.

Recently, an alternative to LUR modeling 
has been developed using focusing techniques 
in GIS [9].

In general, it should be noted that a dense 
air quality monitoring network is required to 
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develop a statistical model. These models find the 
greatest application for the analysis of relatively 
long-term (e. g., seasonal, annual) concentra-
tions of local pollutants. The main limitation 
is that the models do not directly represent the 
processes that determine air pollution.

Analytical models

Analytical models are functional relation-
ships: systems of algebraic, differential, inte-
gro-differential equations, logical conditions. 
The construction of an analytical model for the 
dispersion of pollutants in the atmospheric air of 
cities is associated with certain difficulties. The 
main problems of modeling the state of atmo-
spheric air are due to the complexity and inter-
connectedness of the processes of propagation, 
dispersion and chemical transformation of the 
components of impurities. The urban environ-
ment induces a complex flow field, which gen-
erates heterogeneity of pollutant concentration 
fields and very strong concentration gradients 
in certain streets or squares [10].

All scientific analytical models have limita-
tions of applicability due to different conditions. 
The following types of analytical models can be 
distinguished below.

Computational Fluid Dynamics (CFD) 
models are able to explicitly resolve complex 
air currents and dispersions induced by urban 
obstacles. Computing domains range from a 
fraction to one or two square kilometers.

Analytical models provide better calcula-
tion results than statistical models. Let us 
consider each type of analytical models in more 
detail.

Mesoscale models. Mesoscale models are 
mainly used in forecasting weather and other 
climatic phenomena. The same can be used to 
model air quality in cities.

By integrating the numerical mesoscale 
modeling of the Weather Research and Fore-
casting (WRF) model and the parameteriza-
tion of information on urban development, 
a large number of atmospheric air pollution 
models have been proposed, such as the WRF/
LSM/ Urban modeling system [11], NU–WRF 
model [12] and others. Also, the mesoscale ap-
proach included the formation of atmospheric 
aerosols and chemical transformations with 
their participation, which was implemented in 
the WRF/ Chem–NCSU [13, 14] and WRF/
Chem–ROMS [14] models. An example of the 
use of mesoscale modeling taking into account 
chemical transformations and aerosols is to 

simulate atmospheric air pollution in Sydney 
[15] within the framework of the Australian 
government-funded project The Clean Air and 
Urban Landscapes Hub.

Empirical models. Empirical models in-
clude the composition of regulated methods 
and regulations, such as standard models de-
veloped at the Main Geophysical Observatory by  
A.I. Voeikov. In Russia, to calculate the disper-
sion of pollutants , the OND-86 [16] method was 
used (until January 1, 2018), and the MMP–2017 
[17] method is used at present. Empirical mod-
els can be successfully used to analyze quasi-
stationary processes when the time of emissions 
of substances exceeds the time of movement of 
air masses in the analyzed area of space. These 
models make it possible to calculate the field of 
impurity concentrations for a given direction 
and wind speed and a combination of meteoro-
logical parameters that is most unfavorable for 
dispersion of impurities. But the models have low 
accuracy due to too “rigid” structure and a large 
number of accepted simplifications. 

The numerous correction factors [18] do not 
lead to an increase in accuracy. In addition, the 
model is not applicable for forecasting in specific 
weather conditions.

Parameterized semi-empirical models.
Micro-scale semi-empirical models, which are 
currently considered as the most accurate ones 
among those reflecting the situation of atmo-
spheric air pollution in the urban environment, 
have been independently developed. Gaussian 
models assume a normal distribution of impu-
rities along three axes. They have found great 
practical application for local problems. Gif-
ford [19] proposed a scheme for determining 
the variances of the Gaussians Diffusion Model 
(GDM) in accordance with the Pasquill stabil-
ity classes. The model based on this scheme is 
called the Pasquill–Gifford model. This model 
was recommended in 1986 as the basis for the 
creation of national local models in the IAEA 
member countries [20]. On its basis, the NPO 
Typhoon [21, 22] models have been developed for 
radionuclides in our country. The disadvantage 
of the GDM in comparison with the OND-86 is 
the lack of a rigorous algorithm for selecting 
meteorological conditions for normalizing one-
time concentrations to the maximum ones. The 
advantage is the possibility of calculating under 
actual weather conditions and calculating long-
term concentrations, including average annual 
[23]. Basic equation of GDM composed of two 
probability density functions of the normal dis-
tribution law:

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЙ. МОДЕЛИ И ПРОГНОЗЫ



30
Теорeтическая и прикладная экология. 2022. № 1 / Theoretical and Applied Ecology. 2022. No. 1

  

In world practice, the Gaussian model AER-
MOD is widely used [25], it is recommended by 
the American Environmental Protection Agency 
(EPA). It is suitable for solving local problems at 
a distance of no more than 50 km from the source. 
The model is successfully used to simulate at-
mospheric air pollution [24, 25] and has not lost 
its relevance to this day. Currently, the model is 
being supplemented with new approaches. The 
hybrid model AERMOD LUR was also developed 
[26]. A meaningful solution was obtained for the 
emissions from the Pittsburgh steel mill. The 
railroad was considered as an additional source 
of pollution.

The EPA recommends the CALPUFF 
computational complex for modeling the 
distribution of impurities on a regional scale 
[27]. It is based on Lagrangian–Gaussian 
model (LGM):

This model takes into account the height of 
the source (H) and the average wind speed (u) 
in the direction of the x axis, which leads to ob-
taining more reliable results in comparison with 
GDM. The main disadvantages of the LGM is the 
complexity of determining σ

x
, σ

y
, σ

z
.

The model is widely used in Europe and Asia 
[28, 29].

The Air Pollution Model (TAPM) [30, 31] 
was proposed and developed in Australia. The 
mean wind is determined for horizontal com-
ponents u and ν (m s-1) from the momentum 
equation and the terrain following vertical 
velocity σ (m s-1) from the continuity equation.

The model is based on the solution of the 
Euler and Lagrange equations for different 
cases.

The Eulerian Grid Module (EGM) consists 
of nested grid-based solutions of the prognostic 
equation for concentration χ, and is similar to 
that for the potential virtual temperature and 
specific humidity variables, and includes advec-
tion, diffusion, and terms to represent pollutant 
emission Sχ and chemical reaction Rχ:

The Lagrangian Particle Module (LPM) 
can be used on the innermost nest for selected 
point sources to allow a more detailed account 
of near-source effects, including gradual plume 
rise and near-source dispersion.

In the vertical direction, particle position is 
updated using:

where σ
particle 

is the particle position in terrain 
following coordinate σ

., is the mean ambient 
vertical velocity, σ.́ is perturbation of vertical 
velocity due to ambient turbulence, σ.́p is per-
turbation of vertical velocity due to plume rise 
effects.

In order to calculate total pollutant con-
centration for use in chemistry calculation 
and time-averaging, particles are converted to 
concentration at grid points of the EMG using 
the equation for concentration increment of a 
particle at a grid point:

                                (2).

The model takes into account photochemical 
reactions, dry and wet deposition, urban develop-
ment, terrain and can be adapted for real-time 
modeling.

In the technical description of the model 
[31], it is noted that the model consists of plug-
ins, each of which is responsible for the influence 
of certain parameters. There is also a fairly de-
tailed block diagram describing the connection 
sequence for each of the modules, as well as a list 
of numerical methods used to perform calcula-
tions on the model.

This approach to identify the source of pollu-
tion was used in Karabash, Chelyabinsk region, 
Russia [32].

Most of the TAPM publications were used for 
Southeast Asia and Australia regions [33–36]. 
The calculation accuracy has been improved 
using TAMP with the chemical transport model 
(СТM) [35].

The first serious attempts to account urban 
building were made in parametrized semi-
empirical models developed since 2000, such as 
OSPM [37], SIRANE [38] or ADMS-URBAN 

(1).
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[39]. Street-scale systems were applied in Ma-
drid [40].

Computational Fluid Dynamics models. 
Computational Fluid Dynamics (CFD) mo-
dels are able to explicitly resolve complex air 
currents and dispersions induced by urban 
obstacles using this resolution over computa-
tional domains that range from a fraction to one 
or two square kilometers [41–44]. CFD–based 
models use high-resolution emission estimates 
from microscale emission models. However, 
for real applications (air quality assessment, 
network design, micro-level air pollution abate-
ment strategies, etc.) they lack the computing 
power. It is impossible to use them to simulate 
long periods.

In a number of studies by Russian scholar 
[45], the Navier-Stokes equation was used for 
mathematical modeling of atmospheric aero-
dynamics and the propagation of pollutants over 
a complex underlying surface, the Poisson equa-
tion was used to take into account the pressure, 
and the pollutant was described by the diffusion 
equation, the source was taken to be linear (Kar-
madon Gorge).

Conclusion

Analysis of mathematical models of atmo-
spheric dispersion showed that the most known 
modern models are designed to solve narrow 
problems. To improve the accuracy of calcula-
tions, models often include several submodels 
and form complex systems of software com-
plexes. Many modern models contain elements 
of various previously studied models. They are 
hybrid varieties of existing ones. The complica-
tion of models by introducing a large number of 
variable factors and requires significant software 
resources and training of highly qualified spe-
cialists. Thus, new universal software complexes 
are greatly needed.
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