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The management of fisheries continues 
to be a challenging problem [1–5]. Although 
fisheries have been a major area of research in 
resource economics for more than half a century, 
most studies employ simplified or single-species 
models when in fact the focus is increasingly on 
the management of trade-offs between different 
biological outcomes and socio-economic values. 
Fisheries management can benefit greatly from 
models that are rich enough to allow a sound 
analysis of the trade-offs involved in the fisheries 
management. This requires the use of ecosystem 
models that recognize multiple species or species 
categories [6], together with behavioural or eco-
nomic models [7] that capture the main drivers 
of fishing choices among anglers. 

D.B. Kramer proposed in [8] a four species 
ecosystem model of a coral reef food web along 
with a model of adaptive fish harvesting behav-
iour, where fisheries choose among herbivore 
and piscivore fishing activities depending of the 
relative profitability of the two fishing alterna-
tives. He uses numerical simulation and evalu-
ates the effects of changes in model parameters 
and the economic and social drivers of fishing 
behaviour. This paper analyses the model pro-
posed in [8] and highlights the weaknesses 
in the model including equilibrium values for 
components that are independent of model setup. 
The purpose of this analysis is to identify the 
essential changes required to obtain an interpre-
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table baseline model in future attempts aimed at 
developing models that would allow the effects 
of recreational fishing on coral reefs ecosystems 
to be evaluated.

The paper is organized as follows. In the next 
section, we summarize the key features of the 
model and its parameterization. In section “Anal-
ysis”, we present results from mathematical and 
numerical analysis of the model and compare our 
finding to those in [8]. We highlight the results 
where the key variables of interest are indepen-
dent of parameter values. Also we will show that 
the outcomes or the stability of these variables are 
highly sensitive to changes in parameter values.

A key observation is that the equilibrium 
herbivore biomass outcome (in the absence of 
fishing) is independent of algal levels, highlight-
ing the inadequacy of some of the specifications 
in the model. Further, the analysis shows that 
algal growth rates are far more important than 
coral growth rates. The results suggest that 
some components of the model could benefit 
from alternative specifications. We summarize 
and conclude the paper in section “Conclusions”.

Kramer’s coral reef ecosystem model
Kramer’s model is a trophic-dynamic model 

based on a modified Lotka-Volterra model of 
predator-prey interactions [9, 10] and inter-
species competition (some versions of such 
models are discussed in [10, 11, 12]). The model 
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incorporates algal growth, coral growth and the 
growth of two fish categories, herbivore and pi-
scivore biomass. The relationships governing the 
dynamics of these model components are shown 
in equations (1)–(4) below.

Algal cover:

 (1)

where: A(t) is algal cover as proportion of 
sea floor at time t ; r

A
 is intrinsic rate of growth 

for algae; K
A
 is the carrying capacity of algae 

as proportion of sea floor; a
AC

 is a competition 
coefficient of coral on algae; and a

AH
 is an inter-

action coefficient between herbivores and algae. 
The interaction between herbivores and algae is 
modelled as a simple linear relationship because 
of the absence of evidence of more complex rela-
tionship between the two [8]. The competition 
for light and space between algae and coral is 
modelled using the a

AC
 coefficient which mea-

sures the strength of interspecific competition 
relative to intraspecific competition.

Coral cover:

, (2)

where: C(t) is coral cover as proportion of 
sea floor at time t; r

C
 is intrinsic rate of growth 

for coral; K
C
 is the carrying capacity of coral as 

proportion of sea floor; a
CA

 is the competition co-
efficient of algae on coral; and Slope and HA  are, 
according to [8], the slope and a half saturation 
constant of the sigmoidal Hill function in (2). 
(We shall discuss the validity of these notations 
in the next section). The effect of algae on coral 
is modelled in [8] as a nonlinear relationship 
because, as the algal biomass increases, the 
composition of the algal biomass shifts from turf 
algae to macro-algae, with a dramatic detrimen-
tal effect on coral cover.

Herbivorous fish biomass:

            
(3)

where H(t)  is herbivorous fish density at 
time t, a

HH
 is a density-dependent coefficient of 

herbivorous fish,a
HA

 is an interaction coefficient 
of algae on herbivorous fish, a

HP
 is an interaction 

coefficient of piscivores on herbivores, and the 
last addend represents the fisher’s contribution, 
with the parameters pop for the total population 

of fishers per square kilometre, S
H
 for the propor-

tion of fishers who harvest herbivores, a
HM

 for the 
catch efficiency of fishers, and E

H
 for the fishing 

effort in hours fished per day.
Piscivorous fish biomass:

,                  (4)

where P(n) is the piscivorous fish density at 
time t, a

PP
 is the density-dependent coefficient of 

piscivorous fish, a
PH

 is an interaction coefficient 
of herbivores on piscivores, and the meanings of 
the parameters in the term representing the fish-
ers’ contribution popS

P
a

PM
E

P
P(t)  is analogous 

to the respective ones in the equation for the 
herbivorous biomass (3).

Kramer in [8] presents further details on the 
parameterization of the biophysical components 
of the trophic model and sensitivity analysis done 
on the model parameters. Table 1 presents the 
parameter values used in [8] along with reason-
able ranges for these values. The focus of his 
sensitivity analysis is on the growth rates (r

A
, r

C
), 

carrying capacity levels (K
A
, K

C
), and the fish-

ing effort including the number of fishers (pop).

Analysis

Below, we present results from the analysis 
of the model. Analytical methods are first used 
to describe the interior equilibria and their in-
terpretability as well as the sensitivity of model 
outcomes to some of the parameter values. This 
is followed by a discussion of the results from 
numerical analysis focusing on grow rates and 
carrying capacity levels for corals and algae. 

Analytical results
Interior equilibria and the problem with the 

interpretability of the model
The interior equilibria are the ones for which 

none of the variables vanishes at the stationary 
points. In a way these are the most interesting 
equilibria, since they correspond to a sustain-
able system. The values of the variables at these 
equilibria will be denoted Â, Ĉ, Ĥ, . They are 
determined by the system of equations

                             (5)

combined with the requirement that none of 
the values of the variables is zero, which means 
(for non-negative quantities) that they are 
strictly positive at the stationary points:
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.                                     (6)

After performing elementary algebraic op-
erations, the above system (5) under conditions 
(6) can be reduced to the following system of 
equations:

                                        
(7)

                                                (8)

                                    (9)

Table 
Parameters used in Kramer’s model

Parameter Description Value Reasonable Value/Range Ref.

A(0)
Initial algae cover as proportion 

 of sea floor
0.3 0.1–0.5

Own 
guess

r
A

Algal intrinsic rate of growth 0.3 0.05–0.40 [13]

K
A

Algal carrying capacity as cover 0.8
Prey carrying capacity in 

absence of predators (given
a value)

[8]

a
AC

Competition coefficient of coral  
on algae

0.8 Leave as is for now [17]

a
AH 

Interaction coefficient of herbivorous 
fish on algae

3.3e-5 7.33e-05 [14]

C(0)
Initial coral cover as proportion 

of sea floor
0.3 0–0.5

Own 
guess

r
C 

Coral intrinsic rate of growth 0.2 0.04–0.2 [15, 16]

K
AC

Coral carrying capacity as cover 0.7
Prey carrying capacity in 

absence of predators (given a 
value)

[17, 18]

a
CA

Competition coefficient of algae 
 on coral

0.6 Leave as is

Slope Slope of the Hill function 7.0 Leave as is

HA
Half saturation constant  

of Hill function
0.3 Leave as is

H(0) Initial herbivorous fish density 2100
Take 50% below and above 

2100 as range
[14]

a
HH

Density-dependent coefficient  
of herbivorous fish

7.0e-03 
or 0

4.00e-03 [14]

a
HA

Interaction coefficient of algae on 
herbivorous fish

0.1 1.33e-06 [14]

a
HP

Interaction coefficient of piscivorous 
fish on herbivorous fish

1.0e-5 1.14e-04 [14]

E
H

Effort level of fishers harvesting 
herbivorous fish

2.0 1–5

a
HM

Harvest catchability coefficient 
of herbivorous fish

1.9e-5 Leave as is

P(0) Initial piscivorous fish density 1400 Range: ±50% of this [14, 19]

a
PP

Density-dependent coefficient 
of piscivorous fish

7.0e-3 4.00e-03 [14]

a
PH

Interaction coefficient of herbivorous 
fish on piscivorous fish

6.8e-6 1.14e-05 [14]

E
P

Effort level of fishers harvesting 
piscivorous fish

2.0 1–5 [20]

Pop Total population of fishers 50 10–100

a
PM

Harvest catchability coefficient 
 of piscivorous fish

4.3e-5 Leave as is
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.                                           (10)

In this system we have replaced the nota-
tions Slope and ( )SlopeHA in Hill’s function with 
more succinct m and α  respectively, and intro-
duced for brevity a few constants:

с1 = popSPEP; с2 = popSHEH ,                        (11)

,                                                       (12)

.                        (13)

For all the other parameters we assume the 
same notations and values as in the paper [8] by 
Kramer (Table).

Let us note that in the absence of fishing 
we have 

c1 = c2 = 0.                                                     (14)

This will be the case of our interest in the 
current paper, since before studying the impact 
of human activities on the ecosystem we would 
like to establish a reliable model for describing 
the dynamics of interaction between its com-
ponents, which in this case are algae, corals, 
herbivores, and piscivores.

It follows immediately from equation (9) 
that the equilibrium value for the H-variable is 
completely determined by the parameters of the 
P-equation (4). In particular, in the absence of 
fishing 

.                                          (15)

Therefore, according to the model [1], 
the equilibrium value for the herbivorous fish 
biomass is completely independent from any 
other parameters and variables; in particular 
it does not depend on the equilibrium value of 
the A-variable. The latter is unacceptable, since 
algae, according to the model, is the only source 
of nutrition for herbivorous fish.

For this reason the model proposed in [8] 
is not interpretable. In order to fix the problem 
inherent in the model, one should include in 
equations (3) and (4) nonlinear terms that would 
adequately describe the predator-prey interac-
tion in the system. 

Another feature that makes the model pro-
posed in [8] unacceptable as a baseline model 
of a coral ecosystem is the absence of parameter 

Cr  from the equations (7–10) that determine the 
location and existence of the interior equilibria 
of the dynamical system which is expected to 
describe the ecosystem. It is impossible to inter-
pret the fact that the growth rate of corals does 
not influence the existence and location of an 
equilibrium state of a coral ecosystem.

Interior equilibria and high sensitivity of the 
model with respect to the values of some param-
eters 

As we have shown above, the model proposed 
in [8] is not interpretable, at least in the compo-
nent describing the dynamics of the fish biomass. 
Still it is worth studying some other features of 
the model. In particular, we can assume that 
the amount of the biomass of herbivorous fish 
is stable (at the Ĥ -level determined by (15)), 
and concentrate on the dynamics of the A-C in-
teractions inherent in the model. In particular, 
we shall study the sensitivity of the results con-
cerning the interior equilibria of the system with 
respect to the two parameters that determine the 
behavior of the Hill function present in equation 
(2), which allegedly describes the dynamics of 
the corals biomass. 

Let us concentrate on equations (7) and 
(10) that describe the A- and C- coordinates of 
the interior equilibria. Since the H-coordinate is 
fixed as mentioned above, the P-coordinate can 
be found from (9) as soon as the A-coordinate 
has been determined.

When introducing Hill function [21] in 
the model, [1] argues that “the shape of this 
function is controlled by two parameters” and 
that “Slope is the steepness of the curve at the 
inflection point”.

It is easy to show that this statement is false. 
Using the following notations to save space,

m = Slope,                                                    (16)

α = (HA)m,                                                  (17)

the Hill function from [8] can be rewritten as 

,                                                 (18)

and its first two derivatives are 

                                             (19)

.            (20)
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From the latter formula one can easily find 
the inflection point

 
,                                                 (21)

and the slope of the curve (tangent to the 
curve at this point) 

,                                  (22)

which is clearly not equal to m, or the Slope, 
contrary to the claim in [8]. 

For the following particular choice of pa-
rameter values 

HA = 0.3; Slope = 7,                                       (23)

used in [1] for “baseline model”, the slope 
at the inflection point will be 

.                        (24)

This problem in the model would not have 
been important or worthy of a detailed discus-
sion if the model had not been very sensitive to 
the parameters involved in Hill function. This 
sensitivity is evident when analyzing equation 
(10), which determines the A-coordinate of the 
interior equilibria. 

On the diagram below1 (Figure 1) the points 
of equilibria can be seen as the points of intersec-
tion of the graphs of a sigmoidal Hill function

, and a straight line F(A)= γ + βA,

representing respectively the left hand side and 
the right hand side of the equation (10). 

The graphs (1–4) of the Hill function cor-
respond to four different values of the parameter

: 
(1):  HA = 0.3 (baseline model value, used  

in [1];
(2):  HA = 0.26;
(3):  HA = 0.4; 
(4):  HA = 0.44.
As we see from the diagram, sigmoid (1), 

which corresponds to the choice of the param-
eter HA=0.3, assumed in [8], has three points 
of intersection with the straight line, which 
deliver three A-coordinates of possible interior 
equilibria: 

Â1 ≈ 0.15; Â2 ≈ 0.25; Â3 ≈ 0.63.                  (25) 

When the value of HA decreases to 0.26, 
the two lower-level equilibria merge into one 
as sigmoid curve (2) just touches the line at the 
lower end. If the value of HA decreases further, 
beyond 0.26, the lower-level equilibria disap-

1 The software fooplot (http:// fooplot.com) is used for sketching the graphs in Figures 1 and 3 below.

Fig. 1. The A-coordinates of the interior equilibria are the horizontal coordinates 
of the points of intersection of a sigmoid with the straight line
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pear in a saddle-node bifurcation, leaving only 
one equilibrium point, located at almost the 
saturation level, close to the value of G(Â3) ≈ 
0.99 from (25). 

Similarly, the two base-case equilibria at the 
higher A- values merge, and then disappear when 
the value of HA increases beyond 0.44: curve (4) 
is tangent to the straight line, and for any value 
of HA above 0.44 the curves will intersect only at 
one point, which corresponds to the lower level 
equilibrium. 

This analysis shows that the outcomes of the 
model are highly sensitive to the choice of HA 
value, and a similar analysis can be conducted 
to show that the results are also sensitive to 
the choice of the value of the Slope parameter. 
However, the article [8] has not provided any 
arguments for the baseline choices of the values 
of these parameters. 

Equilibria in the A-C plane
Another issue in paper [8] concerns the 

location and the number of equilibria located in 
the interior of the A-C plane (А ≠ 0, С ≠ 0, H ≠ 0, 
P ≠ 0). The paper claims: “The coral and algal 
nullclines based on baseline parameters values 
cross three times and represent three interior 
equilibria (Fig.1).”, whereas a simple calculation 
shows that these nullclines intersect only ones. 

In order to see that, one can just use equa-
tion (2) for the nullcline obtained from the C-
equation in [8]: 

,

which is equivalent to

,

and substitute the baseline values from that 
paper: 0.8; 0.8A ACK a= = , which results in the 
following equation:

.                                                       (26)

Thus the C-intercept of the null-cline is 1, 
not 0.9 as presented in Figure 1 of article [8]. 
The corrected straight null-cline is shown in 
dotted-dashed line in the diagram below, which 
reproduces Figure 1 from [8]. This line will have 
only one intersection with the sigmoid-shaped 
null-cline, and the equilibrium occurs close to 
the saturation level of the A-coordinate. From 
the interpretational viewpoint that means that 
the nonlinear term represented by the Hill func-
tion could be replaced by a constant without any 

substantial changes in the configuration and 
stability of equilibria.

Thus it has been established that for the 
baseline set of parameters the system has only 
one interior equilibrium in the A-C plane. It can 
be shown, however, that by varying the parame-
ters, one can obtain up to three interior equilibria 
in that plane. In particular, this can be achieved 
by changing the value of the parameter HA. 

The diagram below (Fig. 2) shows the 
graphs of the functions y = G(A), and y = F

1
(A), 

whose points of intersection determine the loca-
tion of the interior equilibria in the A-C plane 
(А ≠ 0, С ≠ 0, H = 0, P = 0) according to the 
dynamical system from [1]. G(A) represents the 
sigmoidal Hill function, and ( )1F A represents 
the straight line:

; ,    where

 ; .                                    (27) 

If we assume the set of parameters from 
Kramer [8], the Hill function is represented by 
the leftmost sigmoid (1). For this curve we as-
sume HA=0.3. As we can see, this curve will have 
exactly one intersection point with the straight 
line, hence there must be a unique equilibrium, 

Fig. 2. The diagram shows the corrected depiction 
of the null-clines in the A-C plane. The location of 

the equilibrium is determined by the point of inter-
section of the sigmoid and the continuous straight 
line. The dashed straight line shows the erroneous 
null-cline from Figure 1 in article [8]; it had three 
points of intersection with the sigmoid, and thus 
led the author to the erroneous conclusion of the 

existence of three equilibria in the A-C phase plane 
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which occurs close to the saturation level for A 
(see Figure 2 above and our comment to Figure 1 
from [8]).

We observe that the system may have up to 
three equilibria, if some parameters of the model are 
changed. In particular, by choosing a higher value 
for the parameter HA, we shall make the sigmoid 
less steep, and the curves may intersect more than 
once. In Figure 3, the three sigmoids following the 
first one to the right, are obtained by choosing the 
values of (HA) to be 0.450 (curve (2)), 0.515 (curve 
(3)), and 0.600 (curve (4)) respectively. 

The second curve has three points of inter-
section with the straight line, hence the sys-
tem will have three equilibria in this case. By 
increasing the value of the parameter HA from 
0.4 to 0.515, we move two higher level equlibria 
towards each other; they merge into one at the 
value of HA close to 0.515: one can see that the 
line touches the corresponding sigmoid at one 
point. With the further increase of (HA), the pair 
of equilibria disappears. Usually such a process 
is a result of saddle-node bifurcation, occurring 
at the value of the parameter close to the critical 
value, 0.515 in this case. It is obvious from the 
behaviour of the sigmoids that a similar bifurca-
tion must have taken place earlier for the value 
of HA somewhere between 0.30 and 0.45.

As we have already noted above, the system 
is highly sensitive to the values of the parameters 
included in the Hill function. Therefore, the 
choice of values for the model parameters should 
be done carefully and needs to be substantiated.

Results from numerical experiments
As we have shown in the previous section, 

the model proposed in [1] is not interpretable due 
to inconsistencies in the dynamical equations 
representing the fish populations (H and P – 
variables). The other two equations in Kramer’s 
model describe the competition between the al-
gae and corals. Although these equations contain 
some terms and parameters whose values are not 
sufficiently explained, it is interesting to evalu-
ate whether these equations can be candidates 
for inclusion in a baseline model. In this sec-
tion we describe the results of some numerical 
experiments testing the sensitivity of the results 
obtained the growth rates (r

A
, r

C
) and the car-

rying capacities (K
A
, KC) of the algae and coral 

variables, respectively. 
Our discussion is based on the numerical 

local analysis of the system proposed in [1] near 
interior equilibria, in the absence of fishing (i.e. 
the population of fishers are set to zeroes, or 
popS

H
 = popS

P
 = 0 in the system (1–4)). 

The interior equilibria of the system are 
found by solving numerically the system (7–10) 
in the assumption that none of the variables is 
0. The stability of an equilibrium is determined 
by the eigenvalues of the Jacobi matrix that 
determines the linearization of the dynamical 
system (1–4) at the equilibrium point. All the 
numerical experiments described below have 
been performed by means of MAPLE soft-
ware (http://www.maplesoft.com/products/
maple/).

Fig. 3. The number and locations of the interior equilibria in the A-C plane depending on the values of HA
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Sensitivity of the model with respect to the 
intrinsic growth rates (r

A
, r

C
): 

The following observations can be made 
based on the analysis.

The analytical and numerical analysis of the 
system (1–4) show that the value of r

A
 does influ-

ence the existence and locations of equilibrium 
points for the system governed by equations 
(1–4). At the same time, the coral reef growth 
rate parameter r

C
 is not present in the equations 

(7–10), hence its value has no effect on the ex-
istence and locations of the equilibria.

The latter is another feature that makes the 
model offered in [8] non-interpretable. 

Although the parameter r
C 

does not affect 
the existence of equilibria, it is present in the 
expression for the Jacobi matrix, linearization 
of the system (1–4); thus variations in the value 
of r

C 
, except in a certain range to be described 

later, do affect the eigenvalues of the Jacobi ma-
trix, and hence the stability of the system at the 
equilibrium points. (Still, as we shall see below, 
the variations of the parameter within the given 
range [0.04, 0.2] do not change the type of the 
equilibrium observed: it is a stable focus for any 
value of r

C 
within the aforementioned range).

The system has no interior equilibria for the 
following growth rate parameter values: 0.05 ≤ 
r

A
<0.1029279759 and 0.04 < r

C 
< 0.2, the system 

has no interior equilibria. For r
A 
≥ 0.1029279759 

and an arbitrary r
C 

 from within the given range, 
the system has one stable equilibrium point (a 
stable focus). 

The following examples show the location 
of the equilibrium, and the eigenvalues for the 
lower boundary value (we shall call it critical 
value) of r

A
, and the minimum and maximum 

possible values of r
C 

.
Hereafter, when listing the coordinates of 

the equilibria, and the corresponding eigenval-
ues, we shall write them in the order in which we 
have listed the dynamical variables in the system 
(1–4), namely: A, C, H, P. 

Example:  For the critical value of r
A
 =  

0.029279759 and the maximum value of r
C
 = 0.2, 

we consider the following set of parameters:
r

A
:= 0.1029279759

k
A
:= 0.8

a
AC

:= 0.8
a

AH
:= 0.000033

r
C
:= 0.2

K
C
:= 0.7

a
CA

:= 0.6
Slope:= 7
H_A:= 0.3
a

HH
:= 0.007

a
HA

:= 0.1
a

HP
:= 0.00001

For the above set of parameters we obtain 
the following equilibrium point values for algae 
(A), corals (C), herbivorous (H) and piscivorous 
(P) fish:

[0.391364709313790,
0.180751790672836, 
1029.41176470588,
3213.64709313790].
The eigenvalues corresponding to this equi-

librium point are:

[-0.0957523410904594]
-0.00312186944856979 +
0.0307721473670114·I
-0.00312186944856979 – 
0.0307721473670114·I
-0.260486516142944·10-6

This equilibrium point is a stable focus. For 
an illustration of the behaviour of the system 
near the equilibrium, one can see below three-
dimensional projections of the phase portraits 
onto the subspaces (A,C,H), (A,C,P), (A,P,H) 
and (C,H,P):

Conclusions

The authors of this paper started studying 
the model proposed in [1] with the purpose of 
applying it to discuss the effects of recreational 
fishing on the ecosystem of a coral reef. After 
studying the model we have come to the conclu-
sion that it requires substantial modifications.

The original model is not acceptable as a 
model describing the ecosystem of coral reefs, 
and therefore not suitable for studying the effects 
of fishing on a coral reef ecosphere. 

The major problems with the model are the 
following:

1. The equilibrium value for the herbivorous 
fish biomass variable H depends only on the 
parameters included in the piscivorous fish bio-
mass equation, and does not depend on any other 
parameters or the equilibrium values of any other 
variables, including the algae biomass, which is 
the only source of food for herbivorous fish. 

2. The existence and location of inte-
rior equilibria do not depend upon the intrinsic 
growth rate of corals r

C
. This feature is difficult 

to interpret or justify.
The above problems could be fixed by add-

ing plausible nonlinear terms in the dynamical 
equations for the C, H, and P variables. 

The model proposed in [8] has some other, 
smaller deficiencies: the choice of the parameters 
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determining the behaviour of the Hill function 
is not substantiated in any way, although, 
as we have shown clearly, small variations 
(about 10%) in the value of the HA param-
eter in the function may change the entire 
behaviour of the dynamical system described 
by the model. It can also be shown that the 
other parameter in the function, Slope, has 
a great influence on the location of interior 
equilibria of the system. 

The variations in the values of these param-
eters may lead to interesting bifurcations, chang-
ing the qualitative behaviour of the system, and 
therefore the parameters should be chosen care-
fully from a range that can be justified based on 
what is known about the system.

This paper has also identified errors in calcu-
lations used to describe the interior equilibria in 
the algae-coral subsystem (section “Equilibria 
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Fig. 4. 3D presentation of the phase trajectory of coral-reef model ecosystem in ACPH space
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in the A-C plane”). The recognition of these er-
rors may lead to a different interpretation, and 
even to the exclusion of the Hill function from 
the C-equation.

However, as some of our numerical experi-
ments have shown (see section “Results from nu-
merical experiments”), the model proposed in [8] 
does have some interpretable components, such 
as the behaviour of the equilibria with respect to 
the variations in the values of carrying capaci-
ties. These features could be retained for possible 
inclusion in a corrected and suitable model of a 
coral-reef ecosystem.
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