УДК 504.73.054:546.49

Биоаккумуляция и физиологические реакции растений на техногенное загрязнение среды ртутью

© 2011. И. Г. Захожий, к.б.н., н.с., И. В. Далькэ, к.б.н., н.с., А. Н. Низовцев, вед. инженер, Т. К. Головко, д.б.н., зав. лабораторией, Институт биологии Коми научного центра Уральского отделения РАН, e-mail: zakhozhiy@ib.komisc.ru

Исследовали биоаккумуляцию и влияние ртути (Hg) на процессы жизнедеятельности растений, произрастающих на импактной территории национального парка «Югыд-Ва» (Республика Коми). При содержании Hg в почве, равном 3–7 ПДК, её концентрация в органах растений была в десятки раз выше, чем у растений с фоновой территории. Корни растений содержали существенно больше Hg, чем надземные органы. Загрязнение почвы ртутью вызывало 2-3-кратное подавление ассимилирующей способности листьев, приводило к нарушению соотношения фотосинтеза и дыхания.

Bioaccumulation and the effect of mercury (Hg) on physiological activity of plants grown in polluted sites of the national park «Yugyd-Va» (Komi Republic) were investigated. At soil content of Hg over 3–7 OEL, Hg concentration in plant organs was essentially higher than in plants from background site. Plant roots accumulated 10-20 times more Hg than aboveground parts. Soil Hg pollution inhibited ${\rm CO_2}$ assimilation in leaves and destroyed balance between photosynthesis and respiration.

Ключевые слова: тяжёлые металлы, ртуть, природные экосистемы, растения, биоаккумуляция, физиологические реакции

Key words: heavy metal, mercury, native ecosystems, plants, bioaccumulation, physiological responses

Ртуть относится к группе тяжёлых металлов (ТМ), и по степени токсического действия на биоту ей присвоен первый класс опасности [1]. Уникальность данного металла состоит в том, что при обычной температуре и давлении ртуть находится в жидком состоянии. В атмосфере она чаще всего представлена в элементном состоянии (Hg°). В гидросфере преобладает двухвалентный ион (Hg⁺²), в литосфере – сульфид ртути (HgS). В природных водах и почве при участии микроорганизмов ртуть легко переходит в метилртуть [2]. Процессы метилирования возможны и в высших растениях. По сравнению с неорганическими формами метилртуть легче проникает через биомембраны [3]. Попадание ртути даже в низких концентрациях в биологические системы может оказаться токсичным для чувствительных видов.

По современным оценкам на долю антропогенных выбросов приходится 40–70% от поступающего ежегодно в атмосферу количества ртути [4]. Среди антропогенных источников с высокой эмиссией ртути в окружающую среду выделяют предприятия металлургической, химической и электротехнической промышленности, производящие и использующие ртуть в производственных циклах. Дополняют этот перечень предприятия по переработке промышленных и бытовых отходов. Значительные выбросы ртути имеют место при сжигании ископаемого топлива. Загрязнение среды ртутью происходит и при её использовании для добычи золота и серебра, с которыми ртуть образует амальгаму.

Из-за широкого распространения антропогенного загрязнения ртутью актуальной становится проблема оценки её влияния на функционирование экосистем и в первую очередь на растения как первичные продуценты органического вещества.

В литературе имеются данные о том, что ртуть как высокотоксичный ТМ ингибирует рост, нарушает минеральное питание и другие функции растений [5 – 8]. Токсическое действие ртути и других ТМ на растительный организм обусловлено способностью взаимодействовать с различными биополимерами и макромолекулами, влиять на их структуру, вытеснять металлы из каталитических центров ферментов. Связывание, деполимеризация и дезактивация макромолекул приводят к нарушению клеточного метаболизма. При сильном загрязнении ТМ вызывают уси-

ление продукции активных форм кислорода, нарушение про/антиоксидантного равновесия и как следствие повреждение клеток и тканей растительного организма. Негативное влияние ТМ на растения может проявляться в нарушении важнейшей функции растений — фотосинтеза [9, 10].

Целью данной работы было изучение биоаккумуляции и влияния ртути на фотосинтетическую активность растений, произрастающих на техногенно загрязнённых участках в национальном парке «Югыд-Ва» (Республика Коми).

Район, методы и объекты исследования

Район исследований расположен в северной части национального парка «Югыд-Ва» (Приполярный Урал), в подзоне крайне-северной тайги (N 65°20,436' E 60°42,787'). Климат здесь суровый с длительной, холодной зимой и коротким прохладным летом; активный вегетационный период длится примерно 60 дней. Среднегодовая температура воздуха составляет -4,8 °C, средняя температура самого теплого месяца июля немного выше +12 °C. Растительный покров территории довольно пёстрый. До высоты 500 м над уровнем моря распространены леса, выше они сменяются ерниковыми и мохово-лишайниковыми горными тундрами. По данным В. А. Мартыненко и С. В. Дёгтевой [11], локальная флора района насчитывает 371 вид. Основной жизненной формой являются многолетние травы (87%).

В пос. Сана-Вож на территории бывшего обогатительного цеха, где металлическая ртуть применялась для извлечения золота из рудного концентрата, было выделено два загрязнённых участка: участок отжига ртути из амальгамы (участок № 1) и участок, примыкающий к помещению для хранения металлической ртути (участок № 2) [12]. Условно чистый (фоновый участок) был выбран с учётом ландшафта местности и возможного направления миграции талых и грунтовых вод и находился на удалении от загрязнённой территории более чем на 500 м. Участки расположены в лесном поясе на высоте 350−400 м над уровнем моря.

Объектом исследования служили четыре вида растений, встреченных на всех опытных участках: иван-чай узколистный — Chamaenerion angustifolium (L.) Scop., щучка дернистая — Deschampsia cespitosa (L.) Beauv., купырь лесной — Anthriscus sylvestris (L.) Hoffm. и дудник лесной — Angelica sylvestris L.

Все работы были проведены в июле 2010 г. в период цветения — начала плодоношения растений. Образцы листьев для определения содержания пигментов отбирали с 5–10 растений в 3-5-кратной биологической повторности. Содержание зелёных и жёлтых пигментов определяли спектрофотометрически на приборе UV-1700 (Shimadzu, Япония) в ацетоновой вытяжке при длинах волн 662, 644 нм (хлорофиллы) и 470 нм (каротиноиды) [13].

Состояние фотосинтетического аппарата (ФСА) характеризовали по показателям индуцированной флуоресценции хлорофилла [14, 15], измеренным с помощью портативного флуориметра РАМ-2100 (Walz, Германия) на средней части функционально зрелых листьев в 10-15-кратной биологической повторности. Непосредственно перед проведением измерений листья отделяли от растений и выдерживали в темноте в течение 30 мин. Темновую адаптацию и последующие измерения проводили при температуре 22-25 °C во влажной среде. После темновой адаптации листьев регистрировали фоновый (Fo) и максимальный (Fm) уровни флуоресценции. Fo измеряли на слабом красном свету, не вызывающем фотохимической реакции. Гт измеряли после короткого импульса (0,8 с) насыщающего света 8000 мкмоль фотонов/м²с. Максимальный квантовый выход фотохимической активности ФС 2 (Fv/Fm) рассчитывали как (Fm-Fo)/Fm. Для анализа эффектов ртути на фотосинтетический аппарат использовали также показатель Fv/Fo, который характеризует размер и число активных фотосинтетических центров в хлоропласте.

Измерения интенсивности ${\rm CO_2/H_2O}$ газообмена листьев растений проводили при помощи ИК-газоанализатора LCPro+ (ADC, Великобритания) в 6-10 биологических повторностях. Для получения световой зависимости фотосинтеза отделённые непосредственно перед измерениями от растений листья экспонировали при разной освещённости в диапазоне ФАР от 0 до 2000 мкмоль квантов/м²с. Интенсивность дыхания определяли в затемнённой камере. Эффективность использования воды листьями (ЭИВ) находили по соотношению скорости фотосинтеза и транспирации.

Параллельно производили отбор растительных образцов для проведения количественного химического анализа на содержание ртути. Растения (7–10 шт.) разделяли по органам и высушивали до воздушно-сухого состояния при температуре 20–25 °C.

Отбор почвенных образцов осуществляли на глубине корнеобитаемого слоя (0-20 см). Из почвенных проб, высушенных при температуре 25 °С до воздушно-сухого состояния, отделяли крупный галечник и щебень. Для лабораторных исследований оставляли фракцию мелкозёма с диаметром частиц не более 1 мм.

Содержание ртути в растительных и почвенных образцах определяли атомно-абсорбционным методом на спектрометре PA-915+с приставкой ПИРО-915 (Люмекс, Россия).

В таблицах и на графиках представлены средние арифметические значения и их стандартные ошибки.

Результаты и их обсуждение

Фоновые уровни ртути в незагрязнённых почвах мира колеблются в широких пределах — от 10 до 800 мкг/кг [16]. Анализ полученных нами данных (табл. 1) показал, что валовое содержание ртути в корнеобитаемом слое почвы фонового участка составляло 100—140 мкг/кг. Эти величины соответствуют средним значениям содержания ртути в органогенном горизонте почв таёжной зоны Республики Коми, сформированных на суглинистых, песчаных и супесчаных породах [17].

На участках № 1 и № 2 содержание Hg в почвенных образцах варьировало в широких пределах — от 1080 до 24000 мкг/кг. Средние значения содержания Hg превышали фоновые на 1-2 порядка. Для нормирования содержания ТМ в почвах установлены их предельно допустимые концентрации (ПДК). Для ртути этот показатель составляет 2,1 мг/кг (почвы) [18]. На исследованных нами загрязнённых участках содержание ртути превышало установленные для почв значения ПДК в среднем в 3-7 раз.

Анализ растительных образцов, отобранных на загрязнённых участках, выявил, что ртуть накапливалась больше в подземной части растений, чем в надземных органах (табл. 2). По содержанию ртути органы растений располагались в следующий убывающий ряд: подземная часть (корни и корневища) > листья >> стебли.

Выявлена положительная зависимость содержания ртути в растении от степени загрязнения среды. С увеличением меркуризации корнеобитаемого слоя почвы концентрация Нд в органах растений возрастала в несколько раз, а в корнях – на 2-3 порядка. Из таблицы 2 видно, что по сравнению с другими видами больше всего ртути накапливали корни D. cespitosa. В надземной части (листья, стебли) D. cespitosa содержание Hg было в 20-50 раз ниже. Такие же закономерности были характерны и для других видов изученных нами растений. Это свидетельствует о способности подземных органов концентрировать ртуть и ограничивать её поступление в надземную часть. Следует также отметить, что содержание Нд в генеративных органах растений было существенно меньше, чем в специализированных органах фотосинтеза – листьях.

Согласно данным литературы [9], Нg оказывает влияние на фотосинтез растений, нарушая световые и темновые реакции. Попадая в клетки мезофилла листьев, ТМ подавляют синтез фотосинтетических пигментов, усиливают окислительную деградацию пигмент-белковых комплексов и компонентов тилакоидных мембран, нарушают взаимодействие фотосистем, инактивируют ферменты углеродного метаболизма [9, 10].

Изучение пигментного комплекса растений показало, что техногенное загрязнение почвы ртутью не оказывало существенного влияния на содержание хлорофиллов и каротиноидов в листьях C. angustifolium, тогда как пигментный комплекс растений D. cespitosa был более чувствительным к меркуризации корнеобитаемой среды (табл. 3). Содержание зелёных и жёлтых пигментов в листьях D. cespitosa на загрязнённых участках было достоверно ниже (р>0,05), чем у растений с фоновой территории. Соотношение зелёных и жёлтых пигментов при этом изменялось незначительно. По-видимому, эффект ртутного загрязнения на пигментный аппарат растений зависит как от уровня загрязнения среды, так и от генетически детерминированной устойчивости вида к присутствию в среде Нд.

Мы оценивали функциональное состояние ФС 2 фотосинтетического аппарата расте-

Таблица 1 Валовое содержание ртути в почвах фонового и загрязнённых участков, мкг/кг сухой почвы

Глубина отбора пробы, см	Фоновый участок	Участок № 1	Участок № 2
0-5	140	13950	8920
5-20	100	6810	14760

Таблица 2

Валовое содержание ртути в органах растений, мкг/кг сухой массы

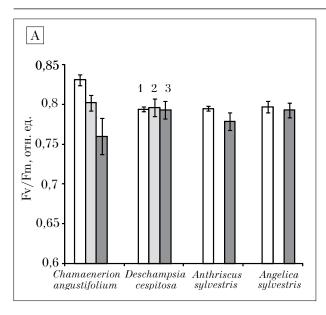
Объект	Фоновый участок	Участок № 1	Участок № 2		
Chamaenerion angustifolium					
Листья	10	32	570		
Стебли	2 21		110		
Подземные органы	13	419	1040		
Deschampsia cespitosa					
Листья	10	46	120		
Стебли	3	9	12		
Соцветия	4	15	17		
Корни	5	700	8100		
Anthriscus sylvestris					
Листья	46	200	140		
Стебли	67	30	81		
Соцветия	9	82	20		
Подземные органы	110	290	490		
Angelica sylvestris					
Листья	11	_	93		
Стебли	7	_	160		
Корневище	1	_	2000		
Корни	9	_	1900		

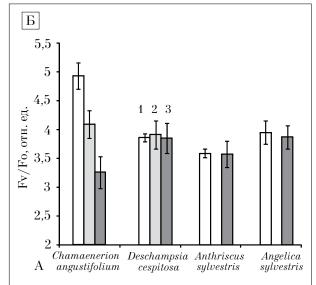
Примечание: «-» – нет данных.

Таблица З

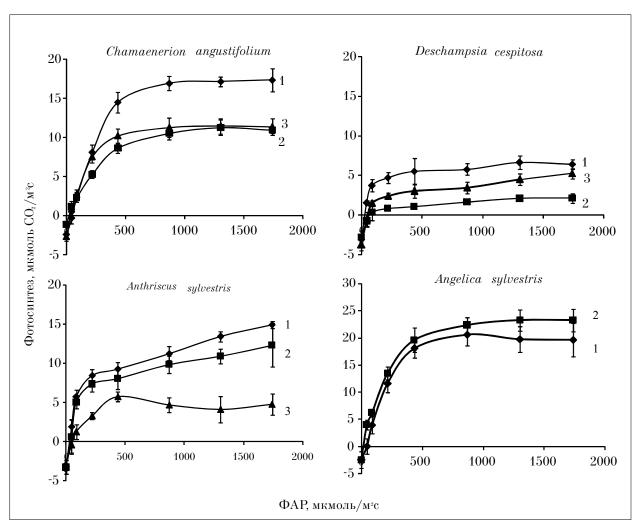
Содержание фотосинтетических пигментов в листьях растений, произрастающих на фоновой и загрязнённых территориях, мг/г сухой массы

X 1 11 1 ' / V						
	Хлорофиллы		Сумма	Хлорофиллы/		
Вариант	a+b	a/b	каротиноидов	каротиноиды		
Chamaenerion angustifolium						
Фоновая территория	$4,46 \pm 0,57$	$2,31 \pm 0,05$	$1,09 \pm 0,19$	$4,14 \pm 0,26$		
Участок №1	$4,68 \pm 0,14$	$2,47 \pm 0,03$	$1,15 \pm 0,06$	$4,08 \pm 0,10$		
Участок №2	$5,21 \pm 0,50$	$3,12 \pm 0,57$	$1,23 \pm 0,19$	$4,29 \pm 0,32$		
Deschampsia cespitosa						
Фоновая территория	$6,30 \pm 0,09$	$3,18 \pm 0,13$	$1,30 \pm 0,04$	$4,84 \pm 0,19$		
Участок №1	$5,23 \pm 0,23$	$3,40 \pm 0,04$	$1,12 \pm 0,06$	$4,68 \pm 0,04$		
Участок №2	$3,93 \pm 0,65*$	$3,09 \pm 0,49$	0.80 ± 0.15 *	$4,95 \pm 0,48$		


Примечание: * – различия достоверны при $p \ge 0.05$.


ний на загрязнённых ртутью участках по величине отношения вариабельной флуоресценции хлорофилла к максимальному (Fv/Fm) и минимальному значению (Fv/Fo) флуоресценции. Величины Fv/Fm и Fv/Fo, равные соответственно около 0,8 и 4,0 или несколько выше, указывают на нормальное состояние ФС 2 растений [14, 19].

У исследованных нами видов величина Fv/Fm варьировала в пределах от 0,76 до 0,83 отн. ед. (рис. 1). Небольшое (на 10%), но достоверное снижение Fv/Fm обнаружено у листьев растений *С. angustifolium*, произрастающих на более загрязнённом участке № 2. Сходные тенденции были установлены и при анализе показателя Fv/Fo, характеризующего число и размер активных фотосинтетических


центров ФС 2 хлоропластов. Следовательно, если судить по показателям флуоресценции хлорофилла, можно говорить об отсутствии или незначительном воздействии ртутного загрязнения корнеобитаемой среды на активность ФС 2 изученных видов. По-видимому, возможности антиоксидантной и репарационной систем хлоропластов были достаточны для поддержания целостности и функциональной активности комплексов ФС 2. Несмотря на высокое содержание поллютанта, механизмы внутриклеточной детоксикации поступившей в ткани ртути позволяют фотосинтетическому аппарату растений эффективно осуществлять световые реакции фотосинтеза.

CO₂-газообмен, отражающий интенсивность фотосинтетического метаболизма угле-

Рис. 1. Показатели функциональной активности фотосинтетического аппарата растений на фоновом (1) и загрязнённых ртутью участках (2, 3): A - Fv/Fm (максимальная эффективность фотохимии ΦC 2); B - Fv/Fo (показатель, характеризующий размер и число активных фотосинтетических центров ΦC 2 хлоропластов)

Рис. 2. Зависимость CO₂-газообмена листьев от освещённости у растений, произрастающих на фоновом (1) и загрязнённых ртутью участках (2, 3)

рода, является одним из наиболее информативных показателей изменения состояния растений под влиянием внешних факторов. Как видно на рисунке 2, исследованные виды отличались по способности ассимилировать CO_2 . Среди растений с фонового участка наибольшей скоростью видимого поглощения CO_2 при насыщающих фотосинтез значениях $\mathrm{\Phi AP}$ характеризовались листья $\mathrm{Angelica\ sylvestris}$. Скорость фотосинтеза листьев $\mathrm{D.\ cespitosa\ была\ вчетверо\ ниже}$. Загрязнение среды ртутью приводило к подавлению ассимилирующей активности листьев у всех видов, за исключением $\mathrm{Angelica\ sylvestris}$.

Реакция дыхания листьев растений на загрязнение была неоднозначной (табл. 4). Так, для C. angustifolium отмечено сильное снижение (на 50%) дыхания листьев на участке \mathbb{N} 1 и незначительное (на 10%) увеличение его скорости на участке \mathbb{N} 2 по сравнению с фоновым участком. Такие же изменения дыхания листьев были характерны для D. cespitosa. Для листьев растений Anthriscus sylvestris отмечено снижение дыхания на меркуризированных участках. Дыхание листьев $Angelica\ sylvestris\ было\ одинаковым на всех участках.$

На загрязнённых участках у всех видов, за исключением Angelica sylvestris, величина соотношения дыхание/фотосинтез повышалась. Это может быть обусловлено увеличением затрат на репарационные процессы и/или необходимостью поддержания энергопластического баланса у импактных растений [7, 20].

У растений на загрязнённых ртутью участках наблюдалось снижение эффективности использования воды, о чём свидетельствует соотношение фотосинтеза и транспирации (табл. 4). Известно, что ионы ртути в больших концентрациях ингибируют транспорт воды, блокируя работу аквапоринов − белков водных каналов клеточных мембран [21]. В наших опытах снижение транспирации листьев было отмечено у растений Anthriscus sylvestris, произрастающих на участке № 2. У других видов скорость транспирации листьев была выше на импактных участках, чем на фоновом участке.

По характеру накопления ТМ выделяют три основные группы растений: эксклудеры, индикаторы, аккумуляторы [22]. Изученные нами виды растений можно отнести к эксклудерам (исключателям), так как с повышением содержания ртути в корнеобитаемой среде её концентрация в подземных органах возрастает гораздо сильнее, чем в надземных органах. Об этом свидетельствует снижение соотноше-

Таблица 4 ${\rm CO}_2$ -газообмен и транспирация листьев растений на фоновом и загрязнённых ртутью участках

Вариант	Дыхание, мкмоль CO ₂ /м ² с	Фотосинтез, мкмоль ${\rm CO_2/m^2c}$	Транспирация, ммольН ₂ О/м ² с	ЭИВ	Дыхание фотосинтез, %
		Chamaenerion ang	ustifolium		
Фоновая территория	2,38±0,40	17,37±1,46	1,11±0,07	$16,5\pm 1,7$	14
Участок №1	1,09±0,28	11,30±1,01	1,48±0,04	$7,6\pm0,7$	10
Участок №2	2,65±0,51	$11,50\pm0,99$	$2,76\pm0,11$	$4,2\pm0,3$	23
		Deschampsia ce	espitos a		
Фоновая территория	3,11±0,26	6,62±0,87	$0,97{\pm}0,02$	$6,8 \pm 0,9$	47
Участок №1	2,81±0,79	2,13±0,62	1,58±0,01	$1,4\pm0,4$	132
Участок №2	3,89±1,60	$5,23\pm0,67$	$1,55\pm0,08$	$3,5 \pm 0,5$	74
	Anthriscus sylvestris				
Фоновая территория	3,50±0,52	14,90±1,15	$2,61\pm0,04$	$5{,}7{\pm}0{,}5$	24
Участок №1	3,28±0,86	12,33±2,79	$2,90\pm0,23$	$4,3\pm0,9$	27
Участок №2	$2,83\pm0,53$	$4,75\pm1,32$	$1,35\pm0,18$	$3,1\pm1,1$	60
Angelica sylvestris					
Фоновая территория	2,43±1,51	20,62±2,00	$2,26\pm0,24$	$9,5\pm0,8$	12
Участок №1	2,50±0,38	23,23±2,08	$3,92\pm0,29$	$6,0\pm0,4$	11

Примечание: ЭИВ – эффективность использования воды листьями растений, мкмольСО, /ммольН,О.

ния концентрации ртути в системе побег/корень. Подземная часть исследованных видов растений проявляет выраженную барьерную функцию. Однако корневая система растений неспособна полностью предотвратить поступление ртути в надземные органы, особенно при её высокой концентрации в почве. Токсическое действие поступившей в листья ртути проявлялось в нарушении соотношения фотосинтеза и дыхания - процессов, ответственных за энергетический баланс. Снижение интенсивности ассимиляции СО, у растений на загрязнённой территории при сохранении максимальной способности хлоропластов к фотохимии может быть связано с инактивацией ферментов цикла Кальвина, участвующих в восстановлении углерода. По мнению ряда авторов [16, 23, 24], это является одной из основных причин отрицательного влияния ТМ на фотосинтез.

Таким образом, нами выявлены закономерности биоаккумуляции и распределения ртути в органах растений, произрастающих на территории бывшего золотообогатительного цеха на Приполярном Урале. Установлена положительная зависимость между содержанием ртути в растениях и в почве. С увеличением меркуризации корнеобитаемого слоя почвы концентрация Нд в органах растений возрастала в несколько раз, а в корнях – на 2-3 порядка. Техногенное загрязнение почвы ртутью не оказывало существенного влияния на пигментный комплекс и потенциальную фотохимическую активность ФС 2. Однако присутствие ртути в почве в концентрациях 6,8 мг/кг и выше вызывало 2-3-кратное подавление ассимилирующей способности листьев большинства исследованных видов.

В целом полученные данные свидетельствуют об эффективности применения эколого-физиологического подхода для биомониторинга, особенно в случаях отсутствия видимых токсических проявлений действия поллютантов.

Литература

- 1. Черных Н.А., Милащенко Н.З., Ладонин В.Ф. Экотоксикологические аспекты загрязнения почв тяжёлыми металлами. Пущино. 2001. 148 с.
- 2. Трахтенберг И.М., Коршун М.Н. Ртуть и её соединения в окружающей среде (гигиенические и экологические аспекты). Киев: Выща школа, 1990. 232 с.
- 3. Ртуть: экологические аспекты применения (гигиенические критерии состояния окружающей среды). Женева: ВОЗ, 1992. 127 с.
- 4. Баргальи Р. Биогеохимия наземных растений. М.: ГЕОС, 2005. 457 с.

- 5. Patra M., Sharma A. Mercury Toxicity in Plants // Botanical Review. 2000. V. 66. P. 379–422.
- 6. Скугорева С.Г., Огородникова С.Ю., Головко Т.К., Ашихмина Т.Я. Фитотоксичность фосфорорганических соединений и ртути. Екатеринбург: УрО РАН, 2008. 152 с.
- 7. Garmash E., Skugoreva S., Golovko T. Plant Responses to Cadmium and Mercury Stress // Handbook of Plant and Crop Stress. 3d Edition / Ed. Pessarakli M. New-York e.a.: Marcel Dekker, Inc., 2010. P. 713–732.
- 8. Israr M., Sahi S., Datta R., Sarkar D. Bioaccumulation and Physiological Effects of Mercury in *Sesbania drummondii* // Chemosphere. 2006. V. 65. P. 591–598.
- 9. Krupa Z., Baszynski T. Some Aspects of Heavy Metals Toxicity Towards Photosynthetic Apparatus: Direct and Indirect Effects on Light and Dark Reactions// Acta Physiol. Plant. 1995. V. 17. P. 177–190.
- 10. Prasad M.N.V., Strzalka K. Impact of Heavy Metal on Photosynthesis // Heavy Metal in Plants from Molecules to Ecosystem / Eds. Prasad M.N.V., Hagemeyer J. Berlin: Springer, 1999. P. 117–139.
- 11. Мартыненко В.А., Дегтева С.В. Конспект флоры национального парка «Югыд-Ва» (Республика Коми). Екатеринбург: УрО РАН, 2003. 108 с.
- 12. Низовцев А.Н., Кондратенок Б.М., Симонов Г.А., Габов Д. М., Кожевников Р.В. Ртуть в техногенно нарушенных грунтах Национального парка // Современные проблемы загрязнения почв: Матер. III междунар. науч. конф. М.: МГУ, 2010. С. 135–136.
- 13. Маслова Т.Г., Попова И.А., Попова О.Ф. Критическая оценка спектрофотометрического метода количественного определения каротиноидов // Физиология растений. 1986. Т. 33. С. 615–619.
- 14. Krause G.H., Weis E. Chlorophyll Fluorescence and Photosynthesis: The Basis // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991. V. 42. P. 313–349.
- 15. Lichtenthaler H., Buschmann C., Knapp M. Measurement of Chlorophyll Fluorescence Kinetics (Kautsky Effect) and the Chlorophyll Fluorescence Decrease Ratio ($R_{\rm FD}$ -Values) with the PAM-fluorometer // Analytical Methods in Plant Stress Biology/ Eds Filek M., Biesaga-Kościelniak Y, Marcińska I. Kraków. 2004. P. 93–111.
- 16. Орлов Д.С. Химия почв. М.: Изд-во МГУ, 1985. 376 с.
- 17. Низовцев А.Н., Безносиков В.А., Кондратенок Б.М., Лодыгин Е.Д. Фоновое содержание ртути в почвах таёжной зоны Республики Коми // Теоретическая и прикладная экология. 2008. № 1. С. 45–50.
- 18. Перечень предельно допустимых концентраций и ориентировочно допустимых химических веществ в почве № 6229-91. Утв. МЗ СССР 19.11.91.
- 19. Dan T.V., KrishnaRaj S., Saxena P.K. Metal Tolerance of Scented Geranium (*Pelargonium* sp., Frensham): Effects of Cadmium and Nickel on Chlorophyll Fluorescence Kinetics // Int. J. Phytorem. 2000. № 2. P. 91–104.

ХИМИЯ ПРИРОДНЫХ СРЕД И ОБЪЕКТОВ

- 20. Семихатова О.А. Энергетика дыхания растений в норме и при экологическом стрессе. Л.: Наука, 1990. 72 с.
- 21. Шапигузов А.Ю. Аквапорины: строение систематика и особенности регуляции // Физиология растений. 2004. Т. 51. № 1. С. 142–152
- 22. Baker A.J.M. Accumulators- and Excludersstrategies in the Response of Plants to Heavy Metals // J. Plant Nutrit. 1981. № 3. P. 643–654.
- 23. Siedlecka A., Krupa Z. Cd/Fe interaction in Higher Plants its Consequences for the Photosynthetic Apparatus // Photosynthetica. 1999. V. 36. № 3. P. 321–331.

24. Sheoran I.S., Singal H.R., Singh R. Effect of Cadmium and Nickel on Photosynthesis and Enzymes of the Photosynthetic Carbon Reduction Cycle in Pigeonpea (*Cajanus cajan* L.) // Photosynthetic Res. 1990. V. 23. P. 345–351.

Работа выполнена в рамках комплексного проекта Института биологии Коми НЦ УрО РАН «Биологическое разнообразие наземных и водных экосистем Приполярного Урала: механизмы формирования, современное состояние, прогноз естественной и антропогенной динамики» (рег. № 09-П-4-1032) по Программе Президиума РАН № 23 «Биологическое разнообразие».

УДК 581.526.35:581.116:581.13 (1-924.82)

Оценка потоков диоксида углерода в растительных сообществах мезо-олиготрофного болота средней тайги

© 2011. О. А. Михайлов¹, аспирант, С. В. Загирова¹, д.б.н., зав. отделом, М. Н. Мигловец¹, аспирант, Ю. Шнайдер², к.б.н., М. Гажович², к.б.н., Л. Кутцбах³, профессор,

¹ Институт биологии Коми научного центра Уральского отделения РАН,

² Институт ботаники и ландшафтной экологии

Эрнст Моритц Арндт Университета Грайфсвальда,

³ Институт почвоведения Университета Гамбурга,

е-mail: mikter@mail.ru; zagirova@ib.komisc.ru; miglovec@bk.ru

В статье приведены результаты исследований потоков диоксида углерода с поверхности мезо-олиготрофного болота средней тайги. Установлено, что наиболее интенсивно выделение углекислого газа в атмосферу идет в кустарничковых сообществах кочек. Стабильный сток диоксида углерода из атмосферы в болотные сообщества наблюдается в сфагновых сообществах микропонижений.

The article presents the results of investigation of CO_2 fluxes from the surface of mezo-oligotrophic peatland of middle taiga. It was stated that the most intense CO_2 emission was from the associations of hummocks with shrub vegetation. The stable sink of CO_2 from the atmosphere to the peatland was noticed in Sphagnum communities of hollows.

Ключевые слова: средняя тайга, мезо-олиготрофное болото, потоки диоксида углерода, парниковые газы

Key words: fluxes of carbon dioxide, emission, flow, dynamics, swamps

В России оторфованные земли занимают около 22% территории и играют важную роль в поддержании газового состава атмосферы [1].

На территории Республики Коми болота и заболоченные земли занимают свыше 30 тыс. км², или 9,6%, в некоторых речных бассейнах — до 40–80% [2]. Процессы стока/эмиссии парниковых газов в болотных экосистемах бореальной зоны Европейского Северо-Востока России слабо изучены. Имеются лишь

данные о потоках метана и диоксида углерода в тундровых сообществах [3, 4]. Величина эмиссии углекислого газа с поверхности болот зависит от таких факторов, как характер микрорельефа, видовой состав растительности и гидротермический режим.

Целью наших исследований являлась характеристика суточной и сезонной динамики стока и эмиссии CO_2 в растительных сообществах мезо-олиготрофного болота, расположенного в подзоне средней тайги.

44